Gauge invariance on interaction $U(1)$ bundles

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 333253
(http://iopscience.iop.org/0305-4470/33/16/314)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 08:05

Please note that terms and conditions apply.

Gauge invariance on interaction $U(1)$ bundles

M Castrillón López, L Hernández Encinas and J Muñoz Masqué
Instituto de Física Aplicada, CSIC, C/Serrano 144, 28006-Madrid, Spain
E-mail: mcastri@mat.ucm.es, encinas@gugu.usal.es and jaime@iec.csic.es

Received 19 November 1999, in final form 18 February 2000

Abstract

The structure of the algebra of gauge-invariant differential forms on the bundle $C \times{ }_{M} E$ is determined, where $p: C \rightarrow M$ is the bundle of connections of a $U(1)$ principal bundle $\pi: P \rightarrow M$, and $E \rightarrow M$ is the associated bundle to P by the representation $\lambda_{r}, r \in \mathbb{N}$, of $U(1)$ on \mathbb{C} given by $\lambda_{r}(z)(w)=z^{r} w, z \in U(1), w \in \mathbb{C}$.

1. Introduction

The aim of this paper is to describe the geometric structure underlying the interaction bundle (i.e. the bundle for interacting particle and gauge fields) in the particular case of $U(1)$ principal bundles. As is well known, the bundle of connections of an arbitrary principal G-bundle $\pi: P \rightarrow M$ is an affine bundle $p: C=C(P) \rightarrow M$ modelled over the vector bundle $T^{*} M \otimes \operatorname{ad} P \rightarrow M(\operatorname{cf}[2,5,6])$, where $\operatorname{ad} P \rightarrow M$ is the adjoint bundle: i.e. the bundle associated to P by the adjoint representation of G on its Lie algebra \mathfrak{g}. In the particular case $G=U(1)$, which corresponds to classical electromagnetism, the adjoint bundle is canonically isomorphic to the trivial line bundle so that C is an affine bundle modelled over the cotangent bundle $T^{*} M$. In two previous papers [7,8] we proved that, in this case, C is endowed with a canonical symplectic form ω_{2} that generates over $\Omega^{\bullet}(M)$ the algebra of differential forms on C which are invariant under the natural representation of the gauge algebra of P (that is, gau $P=\Gamma(M, \operatorname{ad} P))$ on C. The initial motivation for that result was the geometric formulation of Utiyama's theorem (cf $[3,4,6,14]$). If $E \rightarrow M$ is the vector bundle associated to P by a linear representation of G on a finite-dimensional real vector space V, the fibred product $C \times_{M} E$ is usually called the interaction bundle since the Lagrangian for a particle field interacting with a gauge field is defined on it. In fact, this is the bundle on which Utiyama's foundational paper [14] is based (also see [13]), so that it is natural to extend the results of [8] to the interaction bundle in analysing the geometric structure of gauge forms. Moreover, in dealing with the Abelian case we confine ourselves to the linear representations $\lambda_{r}, r \in \mathbb{N}$, of $U(1)$ on \mathbb{C} given by $\lambda_{r}(z)(w)=z^{r} w, z \in U(1), w \in \mathbb{C}$, as they are the inequivalent irreducible real representations of $U(1)$ (e.g., see [1, 3.78]).
$\mathcal{I}_{\text {gau }}(C)$ (resp. $\mathcal{I}_{\text {gau }}(E)$, resp. $\mathcal{I}_{\text {gau }}\left(C \times_{M} E\right)$) denotes the algebra of gauge-invariant differential forms on C (resp. E, resp. $C \times_{M} E$). We have two homomorphisms of $C^{\infty}(M)-$ algebras, $\mathcal{I}_{\text {gau }}(C) \rightarrow \mathcal{I}_{\text {gau }}\left(C \times_{M} E\right), \mathcal{I}_{\text {gau }}(E) \rightarrow \mathcal{I}_{\text {gau }}\left(C \times_{M} E\right)$. The most outstanding novelty is that $\mathcal{I}_{\text {gau }}\left(C \times_{M} E\right)$ is not generated by $\mathcal{I}_{\text {gau }}(C)$ and $\mathcal{I}_{\text {gau }}(E)$: roughly speaking, in order to generate all gauge-invariant differential forms on the interaction bundle it is necessary to add to the above forms a specific 1-form $\alpha \in \Omega^{1}\left(C \times_{M} E\right)$, called the interaction 1-form,
which depends on the integer r (i.e. on the charge of the particle) and its exterior differential. Accordingly, this form allows one to distinguish different representations by means of the algebra of gauge-invariant forms.

In section 2 we recall some properties of the bundle of connections of a principal bundle and introduce the standard coordinate systems on the bundles C, E, which we use throughout. In section 3 we define the action of the group of automorphisms of P on C, on E and on the interaction bundle, and we obtain the corresponding infinitesimal versions of these actions. This leads us to introduce the notions of gau P-invariant and aut P-invariant differential forms on the interaction bundle in section 4. In section 5 it is proved that $J^{1} P \times \mathbb{C}$ is a $U(1)$ principal bundle over $C \times_{M} E$. In section 6 this bundle structure is used in order to give a direct definition of the interaction 1-form α as being the projection onto $C \times_{M} E$ of a certain differential form $J^{1} P \times_{M} \mathbb{C}$, explicitly defined in terms of the structure form on the 1-jet bundle. The geometric interpretation of the form α is closely related to the classification of the Lagrangians on $J^{1}\left(C \times_{M} E\right)$ which are gauge invariant in the Utiyama sense (cf [3]). More precisely, for every connection Γ on P and every section $\xi \in \Gamma(M, E),\left(\sigma_{\Gamma}, \xi\right)^{*} \alpha$ coincides with the imaginary part of $\langle\xi, \nabla \xi\rangle$, where $\sigma_{\Gamma}: M \rightarrow C$ is the section induced by Γ (see the notation below), ∇ is the covariant derivative induced by Γ on E, and \langle,$\rangle stands for the standard$ Hermitian structure on E. The physical meaning of α is also relevant: it is shown to be the 'universal' current of the Yang-Mills-Higgs classical action (see [4, ch 5] and section 6.3 below).

Let A be the standard basis of $\mathfrak{g}=\mathfrak{u}(1)$ (see section 2.2 below for the notation), and let $A^{*} \in \mathfrak{X}(V)$ be the fundamental vector field associated to A under a linear representation. We set $\mathcal{A}(V)=\left\{\Omega \in \Omega^{\bullet}(V) ; i_{A^{*}} \Omega=0, i_{A^{*}} \mathrm{~d} \Omega=0\right\}$. In section 7 we prove that every differential form $\Omega \in \mathcal{A}(V)$ induces a differential form $\Omega_{E} \in \Omega^{\bullet}(E)$, which is not only gauge invariant but also invariant under the Lie algebra of all infinitesimal automorphisms of P. In this way, we obtain all aut P-invariant differential forms on E and, furthermore, the structure of $\mathcal{I}_{\text {gau }}(E)$ is determined.

Section 8 is devoted to the statement and proof of the characterization of $\mathcal{I}_{\text {gau }}\left(C \times_{M} E\right)$; as a consequence, we also determine the algebra of aut P-invariant forms on $C \times_{M} E$. Finally, in section 9 we obtain the basic relations among the forms which generate the algebra of gauge-invariant forms.

2. Preliminaries and notation

2.1. The bundle of connections of a principal G-bundle

Let $\pi: P \rightarrow M$ be a principal G-bundle over an m-dimensional, connected C^{∞} manifold M. We set $T_{G} P=(T P) / G$, and we denote by $[X]$ the orbit of $X \in T P$ in $T_{G} P$. The sections of $T_{G} P$ correspond with the G-invariant vector fields on P, and π-vertical G-invariant vector fields on P can be identified to the sections of the adjoint bundle. We have an exact sequence of vector bundles over M ([2]), $0 \rightarrow \mathrm{ad} P \rightarrow T_{G} P \rightarrow T M \rightarrow 0$. Connections on P correspond with the splittings of this sequence. Hence, connections on P are the sections of an affine bundle $p: C=C(P) \rightarrow M$ modelled over $T^{*} M \otimes \operatorname{ad} P$. We also denote by $\sigma_{\Gamma}: M \rightarrow C$ the section of the bundle of connections induced from Γ.

2.2. Coordinates in C

Let $\pi: P \rightarrow M$ be a $U(1)$ principal bundle and let A be the standard basis of $\mathfrak{u}(1)$: that is, the vector field corresponding to the 1-parameter subgroup $\mathbb{R} \rightarrow U(1), t \mapsto \exp (i t)$.

As $U(1)$ is Abelian, the fundamental vector field $A^{*} \in \mathfrak{X}(P)$ is $U(1)$ invariant. Set $\tilde{A}=\left[A^{*}\right]$. Let $\left(W ; q^{1}, \ldots, q^{m}\right), m=\operatorname{dim} M$, be an open coordinate domain of M on which $\pi^{-1}(W) \simeq W \times U(1)$. We parametrize the points in $U(1)$ as $\exp (\mathrm{i} t), 0 \leqslant t \leqslant 2 \pi$. Thus, the functions $\left(q^{1} \circ \pi, \ldots, q^{m} \circ \pi, t\right)$ are coordinates on P. We usually identify $q^{i} \circ \pi$ to q^{i}. A linear map $\ell: T_{q} M \rightarrow\left(T_{G} P\right)_{q}$ is a section of π_{*} if and only if scalars $\lambda_{1}, \ldots, \lambda_{m}$ exist such that $\ell\left(\partial / \partial q^{i}\right)_{q}=\left(\partial / \partial q^{i}\right)_{q}+\lambda_{i} \tilde{A}_{q}, 1 \leqslant i \leqslant m$. We define p_{1}, \ldots, p_{m} on $p^{-1}(W)$ by $p_{i}(\ell)=-\lambda_{i}$, or equivalently, for every connection $\Gamma, \sigma_{\Gamma}\left(\partial / \partial q^{i}\right)=\partial / \partial q^{i}-\left(p_{i} \circ \sigma_{\Gamma}\right) \tilde{A}$. Hence, the functions q^{i} (or more properly $q^{i} \circ p$) and $p_{i}, 1 \leqslant i \leqslant m$, are coordinates on $p^{-1}(W)$. The bundle of connections of $M \times U(1)$ can be identified with $T^{*} M$, and then the functions $\left(q^{i}, p_{i}\right)$ have their usual meaning ($\operatorname{cf}[7,8]$).

2.3. Coordinates in E

Let $\pi_{E}: E \rightarrow M$ be the vector bundle associated to the linear representation λ_{r} defined in the introduction and let $\left(W ; q^{i}\right)$ be as in section 2.2. We denote by $[u, w]$ the orbit of the pair $(u, w) \in P \times \mathbb{C}$ in $E=(P \times \mathbb{C}) / U(1)$, and let $s_{0}: W \rightarrow P$ be the section corresponding to the trivialization $\pi^{-1}(W) \simeq W \times U(1)$. We define functions $\boldsymbol{x}, \boldsymbol{y}$ on $\pi_{E}^{-1}(W)$ by setting $e=\left[s_{0}\left(\pi_{E} e\right), \boldsymbol{x}(e)+\mathrm{i} \boldsymbol{y}(e)\right]$ where $e \in \pi_{E}^{-1}(W)$ and $\left(q^{1}, \ldots, q^{m}, \boldsymbol{x}, \boldsymbol{y}\right)$ are coordinates on $\pi_{E}^{-1}(W)$.

2.4. Infinitesimal contact transformations

Let $p: N \rightarrow M$ be an arbitrary fibred manifold: i.e. p is a surjective submersion. We denote by $p_{1}: J^{1} N \rightarrow M$ the 1 -jet bundle of local sections of p. For every section $s: W \rightarrow N$ of p defined on an open subset $W \subseteq M$, we denote by $j^{1} s: W \rightarrow J^{1} N$ its jet prolongation. Set $\operatorname{dim} N=m+n$. Every fibred coordinate system $\left(q^{i}, y^{j}\right), 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$, for the projection p induces a coordinate system $\left(q^{i}, y^{j}, y_{i}^{j}\right)$ on $J^{1} N$ by $y_{i}^{j}\left(j_{x}^{1} s\right)=\left(\partial\left(y^{j} \circ s\right) / \partial q^{i}\right)(x)$. A differential 1-form θ on $J^{1} N$ is a contact form if $\left(j^{1} s\right)^{*} \theta=0$ for every local section s of p. The set of all contact forms is a differential system \mathcal{C} of rank n locally generated by $\theta^{j}=\mathrm{d} y^{j}-y_{i}^{j} \mathrm{~d} q^{i}, 1 \leqslant j \leqslant n$. A vector field $X \in \mathfrak{X}\left(J^{1} N\right)$ is said to be an infinitesimal contact transformation if $L_{X} \mathcal{C} \subseteq \mathcal{C}$. For every vector field $X \in \mathfrak{X}(N)$ there exists a unique infinitesimal contact transformation $X^{(1)} \in \mathfrak{X}\left(J^{1} N\right)$ projecting onto X via the projection $p_{10}: J^{1} N \rightarrow J^{0} N=N$, and the mapping $\mathfrak{X}(N) \rightarrow \mathfrak{X}\left(J^{1} N\right), X \mapsto X^{(1)}$, is a Lie algebra monomorphism (e.g., see [12]).

3. The basic liftings

3.1. The action of the group of automorphism on $C \times{ }_{M} E$

Let us denote by Aut P the group of automorphisms of P. Every $\Phi \in \operatorname{Aut} P$ induces a unique diffeomorphism $\phi: M \rightarrow M$, such that $\pi \circ \Phi=\phi \circ \pi$. The mapping $\Phi \mapsto \phi$ is a group homomorphism whose kernel is the gauge group, Gau P.

Let ω_{Γ} be the connection form of a connection Γ on P. Given $\Phi \in \operatorname{Aut} P$ we set $\Phi \cdot \Gamma=\Gamma^{\prime}$, where $\left(\Phi^{-1}\right)^{*} \omega_{\Gamma}=\omega_{\Gamma^{\prime}}($ see $[10$, section 2.6 .2$])$. As $\left(\omega_{\Gamma^{\prime}}\right)_{\mid \pi^{-1}(\phi x)}$ depends only on $\left(\omega_{\Gamma}\right)_{\mid \pi^{-1}(x)}$, we can define a unique diffeomorphism $\Phi_{C}: C \rightarrow C$ such that for every connection Γ and every $x \in M, \Phi_{C}(\Gamma(x))=(\Phi \cdot \Gamma)(x)$. We have (1) $p \circ \Phi_{C}=\phi \circ p,(2)(\Phi \circ \Psi)_{C}=\Phi_{C} \circ \Psi_{C}$, $\forall \Phi, \Psi \in \operatorname{Aut} P$.

Similarly, Aut P acts on E and on $C \times_{M} E$ (notation of section 2.3) by setting $\Phi_{E}([u, w])=[\Phi(u), w], \bar{\Phi}\left(\Gamma_{x},[u, w]\right)=\left(\Phi_{C}\left(\Gamma_{x}\right), \Phi_{E}([u, w])\right)$, respectively, for every
$\Phi \in \operatorname{Aut} P$, with $p\left(\Gamma_{x}\right)=\pi(u)=q$. The definition of $\bar{\Phi}$ makes sense since $p\left(\Phi_{C}\left(\Gamma_{x}\right)\right)=\pi_{E}\left(\Phi_{E}([u, w])\right)=q$.

3.2. The homomorphism aut $P \rightarrow \mathfrak{X}\left(C \times_{M} E\right)$

Let Φ_{t} be the local flow of a vector field X on P. Then, X is a $U(1)$-invariant vector field if and only if $\Phi_{t} \in \operatorname{Aut} P, \forall t$. Because of this we denote by aut P the Lie algebra of all $U(1)-$ invariant vector fields on P and we think of the elements of aut P as being the infinitesimal automorphisms of P. We have an identification aut $P=\Gamma\left(M, T_{G} P\right)$.

Let Φ_{t} be the local flow of $X \in$ aut P. We denote by $X_{C} \in \mathfrak{X}(C), X_{E} \in \mathfrak{X}(E)$, $\bar{X} \in \mathfrak{X}\left(C \times_{M} E\right)$, the infinitesimal generators of the flows $\left(\Phi_{t}\right)_{C},\left(\Phi_{t}\right)_{E}, \bar{\Phi}_{t}$ on $C, E, C \times{ }_{M} E$, respectively, defined in section 3.1. We have Lie algebra homomorphisms

$$
\begin{array}{lll}
\text { aut } P \rightarrow \mathfrak{X}(C) & & X \mapsto X_{C} \\
\text { aut } P \rightarrow \mathfrak{X}(E) & & X \mapsto X_{E} \\
\text { aut } P \rightarrow \mathfrak{X}\left(C \times_{M} E\right) & & X \mapsto \bar{X} .
\end{array}
$$

If $\left(W ; q^{i}\right)$ is as in section 2.2, then it is not difficult to see that a vector field $X \in \mathfrak{X}\left(\pi^{-1} W\right)$ is $U(1)$ invariant if and only if there exist functions $f_{i}, g \in C^{\infty}(W)$, such that

$$
\begin{equation*}
X=f^{i}\left(q^{1}, \ldots, q^{m}\right) \frac{\partial}{\partial q^{i}}+g\left(q^{1}, \ldots, q^{m}\right) A^{*} \tag{1}
\end{equation*}
$$

and we have (see $[7,9]$):

$$
\begin{align*}
& X_{C}=f^{i} \frac{\partial}{\partial q^{i}}-\left(\frac{\partial g}{\partial q^{i}}+\frac{\partial f^{h}}{\partial q^{i}} p_{h}\right) \frac{\partial}{\partial p_{i}} \tag{2}\\
& X_{E}=f^{i} \frac{\partial}{\partial q^{i}}-r g\left(\boldsymbol{y} \frac{\partial}{\partial \boldsymbol{x}}-\boldsymbol{x} \frac{\partial}{\partial \boldsymbol{y}}\right) \tag{3}\\
& \bar{X}=f^{i} \frac{\partial}{\partial q^{i}}-\left(\frac{\partial g}{\partial q^{i}}+\frac{\partial f^{h}}{\partial q^{i}} p_{h}\right) \frac{\partial}{\partial p_{i}}-r g\left(\boldsymbol{y} \frac{\partial}{\partial \boldsymbol{x}}-\boldsymbol{x} \frac{\partial}{\partial \boldsymbol{y}}\right) . \tag{4}
\end{align*}
$$

Note that every $X \in \operatorname{aut} P$ is π-projectable and that the projections of X_{C}, X_{E} and \bar{X} onto M coincide with that of X. Moreover, the vector field $X_{C}+X_{E} \in \mathfrak{X}(C \times E)$ is tangent to the submanifold $C \times_{M} E$ and we have $\bar{X}=X_{C}+X_{E}$.

4. Invariance

Definition 1. A differential form Ω on C (resp. E, resp. $C \times{ }_{M} E$) is said to be aut P invariant if for every $X \in$ aut P, we have

$$
\begin{equation*}
L_{X_{C}} \Omega=0\left(\text { resp. } L_{X_{E}} \Omega=0, \text { resp. } L_{\bar{X}} \Omega=0\right) \tag{5}
\end{equation*}
$$

We denote by $\mathcal{I}_{\text {aut }}(C)$ (resp. $\mathcal{I}_{\text {aut }}(E)$, resp. $\mathcal{I}_{\text {aut }}\left(C \times_{M} E\right)$) the algebra of aut P-invariant differential forms on C (resp. E, resp. $C \times_{M} E$). From the definitions it follows that there are natural inclusions

$$
\mathcal{I}_{\text {aut }}(C) \subset \mathcal{I}_{\text {aut }}\left(C \times_{M} E\right) \quad \mathcal{I}_{\text {aut }}(E) \subset \mathcal{I}_{\text {aut }}\left(C \times_{M} E\right)
$$

induced by the canonical projections $p r_{1}: C \times_{M} E \rightarrow C, p r_{2}: C \times_{M} E \rightarrow E$, respectively.
A differential form Ω on C (resp. E, resp. $C \times_{M} E$) is said to be gauge invariant if the corresponding equation in (5) holds true for every $X \in \operatorname{gau} P$. We denote by $\mathcal{I}_{\text {gau }}(C)$ (resp. $\mathcal{I}_{\mathrm{gau}}(E)$, resp. $\mathcal{I}_{\mathrm{gau}}\left(C \times_{M} E\right)$) the algebra of gau P-invariant forms on C (resp. E,
resp. $\left.C \times_{M} E\right)$. Note that $\mathcal{I}_{\text {gau }}(C), \mathcal{I}_{\text {gau }}(E), \mathcal{I}_{\text {gau }}\left(C \times_{M} E\right)$ are endowed with a structure of algebra over $\Omega^{\bullet}(M)$ via the natural projections. We thus have natural inclusions

$$
\begin{array}{ll}
\mathcal{I}_{\text {gau }}(C) \subset \mathcal{I}_{\text {gau }}\left(C \times_{M} E\right) & \mathcal{I}_{\text {aut }}(C) \subset \mathcal{I}_{\text {gau }}(C) \\
\mathcal{I}_{\text {gau }}(E) \subset \mathcal{I}_{\text {gau }}\left(C \times_{M} E\right) & \mathcal{I}_{\text {aut }}(E) \subset \mathcal{I}_{\text {gau }}(E) \\
\mathcal{I}_{\text {aut }}\left(C \times_{M} E\right) \subset \mathcal{I}_{\text {gau }}\left(C \times_{M} E\right) .
\end{array}
$$

4.1. Structure of $\mathcal{I}_{\text {gau }}(C)$

The algebra of gauge-invariant forms on the bundle of connections of a $U(1)$ principal bundle $\pi: P \rightarrow M$ has been characterized in $[7,8]$. It turns out that

$$
\mathcal{I}_{\text {gau }}(C)=p^{*} \Omega^{\bullet}(M)\left[\omega_{2}\right]
$$

where ω_{2} is a symplectic form on C whose local expression in the system of coordinates defined in section 2.2 is $\omega_{2}=\mathrm{d} p_{i} \wedge \mathrm{~d} q^{i}$: i.e. the general expression of a gauge-invariant r-form on C is $\xi_{r}=\sum p^{*} v_{r-2 s} \wedge\left(\omega_{2}\right)^{s}, v_{r-2 s} \in \Omega^{\bullet}(M), s=0, \ldots,[n / 2]$. In particular, it is not difficult to prove that the subalgebra of aut P-invariant forms are polynomial expressions of the form ω_{2}, that is

$$
\mathcal{I}_{\mathrm{aut}}(C)=\mathbb{R}\left[\omega_{2}\right]
$$

5. The identification $\left(J^{1} P \times \mathbb{C}\right) / U(1) \simeq C \times_{M} E$

5.1. The connection associated to a point in $J^{1} P$

Each section $s: W \rightarrow P$ of $\pi: P \rightarrow M$, defined on an open neigbourhood of $q \in M$, defines 'an element of connection at q ': i.e. a point $\Gamma_{q} \in C_{q}$, which is determined by giving a retract $\Gamma_{q}: T_{u} P \rightarrow V_{u} P$ of the inclusion of the vertical subspace $V_{u} P \subset T_{u} P, \forall u \in \pi^{-1}(q)$, as follows: $\Gamma_{q}(X)=X-\left(R_{z}\right)_{*} s_{*} \pi_{*}(X), X \in T_{u} P$, where $z \in U(1)$ is the unique element such that $u=s(q) \cdot z$. Note that for every $z \in U(1)$, we have $\left(R_{z}\right)_{*} \circ \Gamma_{q}=\Gamma_{q} \circ\left(R_{z}\right)_{*}$. It is easy to see that Γ_{q} depends only on $j_{q}^{1} s$, so that we can define a map of fibred manifolds over M, $\gamma: J^{1} P \rightarrow C$ by setting $\gamma\left(j_{q}^{1} s\right)=\Gamma_{q}$. We say that $\gamma\left(j_{q}^{1} s\right)$ is the element of connection at the point q associated to the 1-jet $j_{q}^{1} s$.

Proposition 2. Let us consider the induced action of $U(1)$ on $J^{1} P$; i.e. $j_{x}^{1} s \cdot z=j_{x}^{1}\left(R_{z} \circ s\right)$ for $z \in U(1)$ and the action of $U(1)$ on \mathbb{C} defined by the representation λ_{r}. With the same notation as in sections 2.3 and 5.1, let $\varphi: J^{1} P \times \mathbb{C} \rightarrow C \times{ }_{M} E$ be the map of fibred manifolds over M given by $\varphi\left(j_{q}^{1} s, w\right)=\left(\gamma\left(j_{q}^{1} s\right),[s(q), w]\right)$. Then, φ is a surjective submersion whose fibres are the orbits of the action of $U(1)$ on $J^{1} P \times \mathbb{C}$ given by $\left(j_{q}^{1} s, w\right) \cdot z=\left(j_{q}^{1} s \cdot z, z^{-1} \cdot w\right)$. Hence, we have a natural identification $\left(J^{1} P \times \mathbb{C}\right) / U(1) \simeq C \times_{M} E$.

Proof. Let $\pi_{10}: J^{1} P \rightarrow P$ be the canonical projection, $\pi_{10}\left(j_{q}^{1} s\right)=s(q)$. With the same notation as in sections 2.2 and 2.4, let $\left(q_{i}, t, t_{i}\right), 1 \leqslant i \leqslant m$, be the coordinate system induced on $\pi_{10}^{-1}\left(\pi^{-1}(W)\right)$ by $\left(\pi^{-1}(W) ; q_{i}, t\right)$: i.e. $t_{i}\left(j_{q}^{1} s\right)=\left(\partial(t \circ s) / \partial q^{i}\right)(q)$. On $p^{-1}(W) \times_{W} \pi_{E}^{-1}(W) \subset C \times_{M} E$, we consider the coordinate system $\left(q^{i}, p_{i}, \boldsymbol{x}, \boldsymbol{y}\right)$ defined in sections 2.2 and 2.3. In these systems, the equations of φ are
$q^{i} \circ \varphi=q^{i} \quad p_{i} \circ \varphi=-t_{i}(1 \leqslant i \leqslant m) \quad(x+\mathrm{i} \boldsymbol{y}) \circ \varphi=\exp (\mathrm{i} r t)(x+\mathrm{i} y)$
thus proving that φ is a submersion. In fact, $\left(p_{i} \circ \varphi\right)\left(j_{q}^{1} s, w\right)=p_{i}\left(\gamma\left(j_{q}^{1} s\right)\right)$, and from the very definition of the coordinates p_{i} in section 2.2 we have

$$
\sigma_{\gamma\left(j_{q}^{1} s\right)}\left(\partial / \partial q^{i}\right)_{q}=\left[\partial / \partial q^{i}\right]_{q}-p_{i}\left(\gamma\left(j_{q}^{1} s\right)\right) \tilde{A}_{q} .
$$

Hence

$$
\left(\partial / \partial q^{i}\right)_{s(q)}^{*}=\left(\partial / \partial q^{i}\right)_{s(q)}-p_{i}\left(\gamma\left(j_{q}^{1} s\right)\right) A_{s(q)}^{*} .
$$

Moreover, according to the definition of the connection associated to $j_{q}^{1} s$ in section 5.1, $\gamma\left(j_{q}^{1} s\right)$ is obtained by imposing

$$
\begin{aligned}
0=\gamma\left(j_{q}^{1} s\right) & \left(\partial / \partial q^{i}\right)_{s(q)}^{*}=\left(\partial / \partial q^{i}\right)_{s(q)}^{*}-s_{*}\left(\partial / \partial q^{i}\right)_{q} \\
& =\left(\left(\partial / \partial q^{i}\right)_{s(q)}-p_{i}\left(\gamma\left(j_{q}^{1} s\right)\right) A_{s(q)}^{*}\right)-\left(\left(\partial / \partial q_{i}\right)_{s(q)}+\left(\partial(t \circ s) / \partial q^{i}\right)(q)(\partial / \partial t)_{s(q)}\right)
\end{aligned}
$$

and thus

$$
p_{i}\left(\gamma\left(j_{q}^{1} s\right)\right)=-\left(\partial(t \circ s) / \partial q^{i}\right)(q)=-t_{i}\left(j_{q}^{1} s\right) .
$$

Similarly, we have

$$
\begin{aligned}
((\boldsymbol{x}+\mathrm{i} \boldsymbol{y}) \circ \varphi)\left(j_{q}^{1} s, w\right) & =(\boldsymbol{x}+\mathrm{i} \boldsymbol{y})([s(q), w]) \\
& =(\boldsymbol{x}+\mathrm{i} \boldsymbol{y})\left[s_{0}(q) \cdot \exp (\mathrm{i} t \cdot s(q)), w\right] \\
& =(\boldsymbol{x}+\mathrm{i} \boldsymbol{y})\left[s_{0}(q), \exp (\mathrm{i} r t \cdot s(q)) w\right] \\
& =\exp (\mathrm{i} r t \cdot s(q)) w
\end{aligned}
$$

as follows from the very definition of $\boldsymbol{x}, \boldsymbol{y}$ in section 2.3. Given a point $\left(\Gamma_{q},[u, w]\right) \in C \times_{M} E$, $q=\pi(u)$, since Γ_{q} is a retract of $V_{u} P \subset T_{u} P$, we have

$$
\left(\Gamma_{q}\right)_{\mid T_{u} P}=\left((\mathrm{d} t)_{u}-\lambda_{i}\left(\mathrm{~d} q^{i}\right)_{u}\right) \otimes(\partial / \partial t)_{u} .
$$

Hence, we can define a point $j_{q}^{1} s \in J^{1} P$ by imposing $s(q)=u,\left(\partial(t \circ s) / \partial q^{i}\right)(q)=\lambda_{i}$. Accordingly, Γ_{q} and $\gamma\left(j_{q}^{1} s\right)$ coincide over $T_{u} P$, and since Γ_{q} and $\gamma\left(j_{x}^{1} s\right)$ commute with the action of G, we can conclude that Γ_{q} and $\gamma\left(j_{q}^{1} s\right)$ coincide at each point of the fibre $\pi^{-1}(q)$. Therefore, φ is surjective. Moreover, since $u=s(q) \cdot z=(s(q) \cdot \zeta) \cdot\left(\zeta^{-1} z\right)$, for every $\zeta \in U(1)$, from the definition of γ for every $X \in T_{u} P, u \in \pi^{-1}(q)$, we obtain
$\gamma\left(j_{q}^{1}\left(R_{\zeta} \circ s\right)\right)(X)=X-\left(R_{\zeta^{-1} z}\right)_{*}\left(R_{\zeta} \circ s\right)_{*}\left(\pi_{*} X\right)=X-s_{*} \pi_{*} X=\gamma\left(j_{q}^{1} s\right)(X)$.
Hence
$\varphi\left(j_{q}^{1} s \cdot \zeta, \zeta^{-1} \cdot w\right)=\left(\gamma\left(j_{q}^{1} s \cdot \zeta\right),\left[s(x) \cdot \zeta, \zeta^{-1} \cdot w\right]\right)=\left(\gamma\left(j_{q}^{1} s\right),[s(q), w]\right)=\varphi\left(j_{q}^{1} s, w\right)$.
Conversely, assume $\gamma\left(j_{q}^{1} s\right)=\gamma\left(j_{q}^{1} s^{\prime}\right),[s(q), w]=\left[s^{\prime}(q), w^{\prime}\right]$. Then there exists $\zeta \in U(1)$ such that $s^{\prime}(q)=s(q) \cdot \zeta, w^{\prime}=\zeta^{-1} \cdot w$. Hence $\gamma\left(j_{q}^{1}\left(R_{\zeta} \circ s\right)\right)=\gamma\left(j_{q}^{1} s^{\prime}\right)$, and since $\left(R_{\zeta} \circ s\right)(q)=s^{\prime}(q)=u$, from the definition of γ, we obtain

$$
\left(\partial\left(t \circ s^{\prime}\right) / \partial q^{i}\right)(q)=\left(\partial\left(t \circ R_{\zeta} \circ s\right) / \partial q^{i}\right)(q) .
$$

Thus, $j_{q}^{1}\left(R_{\zeta} \circ s\right)=j_{q}^{1} s \cdot \zeta=j_{q}^{1} s^{\prime}$.

6. The interaction 1-form

6.1. The structure form

As is well known (e.g., see [12]), $J^{1} P$ is endowed with a $V(P)$-valued 1-form θ, called the structure form on the 1 -jet bundle. For a $U(1)$ bundle $\pi: P \rightarrow M$, the vertical bundle $V(P)$ is a trivial line bundle, so that we can think of the structure form as an ordinary (i.e. real-valued) 1 -form on $J^{1} P$. With the same notation as in section 2.2, let $\left(q^{i}, t, t_{i}\right), 1 \leqslant i \leqslant m$, be the coordinate system induced on $\pi_{10}^{-1}\left(\pi^{-1}(W)\right)$ by $\left(\pi^{-1}(W) ; q^{i}, t\right)$. Then, the local expression of the structure form is $\theta=\mathrm{d} t-t_{i} \mathrm{~d} q^{i}$.

Proposition 3. Let $z=x+\mathrm{i} y$ be the complex coordinate on \mathbb{C}, and let $\varphi: J^{1} P \times \mathbb{C} \rightarrow C \times{ }_{M} E$ be the submersion defined in proposition 2. We have
(i) The 1-form $\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta$ on $J^{1} P \times \mathbb{C}$, where θ denotes the structure form and Im the imaginary part, is φ-projectable onto $C \times_{M} E$: that is, there exists a unique 1 -form α on $C \times_{M} E$ such that

$$
\varphi^{*}(\alpha)=\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta
$$

(ii) Furthermore, α is aut P-invariant. It is called the interaction 1-form on the bundle $C \times{ }_{M} E$, and its local expression on the coordinate system $\left(q^{i}, p_{i}, \boldsymbol{x}, \boldsymbol{y}\right)(c f$ sections 2.2 and 2.3$)$ is

$$
\begin{equation*}
\alpha=\boldsymbol{x} \mathrm{d} \boldsymbol{y}-\boldsymbol{y} \mathrm{d} \boldsymbol{x}+r\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right) p_{i} \mathrm{~d} q^{i} . \tag{7}
\end{equation*}
$$

Proof. (i) With the notations above the local expression of $\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta$ is $x \mathrm{~d} y-y \mathrm{~d} x+$ $r\left(x^{2}+y^{2}\right)\left(\mathrm{d} t-t_{i} \mathrm{~d} q^{i}\right)$. Let $A^{\bullet} \in \mathfrak{X}\left(J^{1} P \times \mathbb{C}\right)$ be the fundamental vector field associated to the standard basis $A \in \mathfrak{u}(1)$ under the action of $U(1)$ on $J^{1} P \times \mathbb{C}$ defined in proposition 2. We have $A^{\bullet}=\partial / \partial t+r(y \partial / \partial x-x \partial / \partial y)$. Hence:
(a) $i_{A} \cdot(\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta)=0$,
(b) $i_{A} \cdot \mathrm{~d}(\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta)=0$.

From (a), (b) we obtain $L_{A} \cdot(\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta)=0$, or equivalently,
(c) $\left(R_{\exp (i t)}\right) *(\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta)=\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta, \forall t \in \mathbb{R}$.

Taking into account that $\operatorname{ker} \varphi_{*}=\left\langle A^{\bullet}\right\rangle$, by virtue of proposition 2 , from equation (a) it follows that $(\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta)(X)=0$, for every φ-vertical tangent vector $X \in T_{\left(j_{q}^{1} s, w\right)}\left(J^{1} P \times\right.$ \mathbb{C}). Moreover, from equation (c) we obtain

$$
(\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta)\left(\left(R_{z}\right)_{*} X\right)=(\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta)(X)
$$

This proves that there exists a unique 1-form α on $C \times{ }_{M} E$, such that for every $X \in T\left(J^{1} P \times \mathbb{C}\right)$, $\alpha\left(\varphi_{*} X\right)=(\operatorname{Im}(\bar{z} \mathrm{~d} z)+r z \bar{z} \theta)(X)$.
(ii) By using the equations of φ in formula (6), the local expression for α in the statement is easily deduced and, as a simple calculation shows, for every $X \in$ aut P, from formula (4) we obtain $L_{\bar{X}} \alpha=0$.

6.2. Hermitian structure on E

As λ_{r} is a unitary representation, E is endowed with a canonical Hermitian structure \langle,$\rangle :$ $E \times_{M} E \rightarrow \mathbb{C}$, which is uniquely determined by imposing $\left\langle\left[u, w_{1}\right],\left[u, w_{2}\right]\right\rangle=\bar{w}_{1} w_{2}$, for all $u \in P, w_{1}, w_{2} \in \mathbb{C}$, where we have used the notation introduced in section 2.3 and \bar{w} stands for the complex conjugate of $w \in \mathbb{C}$.

The geometric interpretation of the interaction 1-form is as follows.
Proposition 4. With the hypotheses and notation as in sections 2.1, 2.3 and 6.2, for every connection Γ on $\pi: P \rightarrow M$, and every section $\xi \in \Gamma(M, E)$, we have

$$
\begin{equation*}
\left(\sigma_{\Gamma}, \xi\right)^{*} \alpha=\operatorname{Im}\langle\xi, \nabla \xi\rangle \tag{8}
\end{equation*}
$$

where ∇ stands for the covariant derivative induced by Γ on E. Conversely, if β is a $p r_{2-}$ horizontal 1-form on $C \times_{M} E$, $p r_{2}: C \times_{M} E \rightarrow E$ being the projection onto the second factor, which satisfies the same property stated above, then $\beta=\alpha$.

Proof. As is well known (e.g., see [11, section 3.5.2]) to each section $\xi \in \Gamma(M, E)$ we can associate a function $F_{\xi}: P \rightarrow \mathbb{C}$, by imposing for every $u \in P, \xi(\pi(u))=\left[u, F_{\xi}(u)\right]$
(notation as in section 2.3). If $\chi=(\boldsymbol{x}+\mathrm{i} \boldsymbol{y}) \circ \xi$, locally, then on a trivializing open subset $\pi^{-1}(W) \simeq W \times U(1)$ we have

$$
F_{\xi}\left(q^{1}, \ldots, q^{m} ; t\right)=\exp (-\mathrm{i} r t) \chi\left(q^{1}, \ldots, q^{m}\right)
$$

since $F_{\xi}(u \cdot z)=z^{-1} F_{\xi}(u)$, for every $u \in P, z \in U(1)$. Given a connection Γ on P, and a vector field X of M, then $X^{*} F_{\xi}$ is the function corresponding to the section $\nabla_{X} \xi$ $\left(\operatorname{cf}\left[10\right.\right.$, section 3.1.3]). We have $\left(\partial / \partial q^{i}\right)^{*}=\partial / \partial q^{i}-\left(p_{i} \circ \sigma_{\Gamma}\right)(\partial / \partial t)$. Hence

$$
\begin{aligned}
\left(\partial / \partial q^{i}\right)^{*} F_{\xi} & =\exp (-\mathrm{i} r t) \frac{\partial \chi}{\partial q^{i}}+\mathrm{i} r \exp (-\mathrm{i} r t)\left(p_{i} \circ \sigma_{\Gamma}\right) \chi \\
& =\exp (-\mathrm{i} r t)\left(\frac{\partial \chi}{\partial q^{i}}+\mathrm{i} r\left(p_{i} \circ \sigma_{\Gamma}\right) \chi\right)
\end{aligned}
$$

and accordingly,

$$
(\boldsymbol{x}+\mathrm{i} \boldsymbol{y}) \circ\left(\nabla_{\partial / \partial q^{i}} \boldsymbol{\xi}\right)=\partial \chi / \partial q^{i}+\mathrm{i} r\left(p_{i} \circ \sigma_{\Gamma}\right) \chi
$$

Therefore,

$$
\left\langle\xi, \nabla_{\partial / \partial q^{i}} \xi\right\rangle=\bar{\chi}\left(\partial \chi / \partial q^{i}\right)+\operatorname{ir} \chi \bar{\chi}\left(p_{i} \circ \sigma_{\Gamma}\right)
$$

and the result follows from the local expression of α (see formula (7) in proposition 3). Moreover, assume that a $p r_{2}$-horizontal 1-form β satisfies the same property as the interaction 1-form. Locally, we have $\beta=A \mathrm{~d} \boldsymbol{x}+B \mathrm{~d} \boldsymbol{y}+C_{j} \mathrm{~d} q^{j}$. Hence

$$
\begin{aligned}
\left(A \circ\left(\sigma_{\Gamma}, \xi\right)\right) & \frac{\partial(\boldsymbol{x} \circ \xi)}{\partial q^{j}}+\left(B \circ\left(\sigma_{\Gamma}, \xi\right)\right) \frac{\partial(\boldsymbol{y} \circ \xi)}{\partial q^{j}}+C_{j} \circ\left(\sigma_{\Gamma}, \xi\right) \\
& =(\boldsymbol{x} \circ \xi) \frac{\partial(\boldsymbol{y} \circ \xi)}{\partial q^{j}}-(\boldsymbol{y} \circ \xi) \frac{\partial(\boldsymbol{x} \circ \xi)}{\partial q^{j}}+r \chi \bar{\chi} p_{j} \circ \sigma_{\Gamma} .
\end{aligned}
$$

Since $\boldsymbol{x} \circ \xi, \boldsymbol{y} \circ \xi$ are arbitrary functions and for a given $q \in M,\left(\sigma_{\Gamma}(q), \xi(q)\right)$ is an arbitrary point of the interaction bundle we can conclude $A=-\boldsymbol{y}, B=\boldsymbol{x}, C_{j}=r\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right) p_{j}$, thus concluding the proof.

Corollary 5. We have $\left(\sigma_{\Gamma}, \xi\right)^{*} \mathrm{~d} \alpha=2 \operatorname{Im}\langle\nabla \xi, \nabla \xi\rangle+r\langle\xi, \xi\rangle\left(\sigma_{\Gamma}^{*} \omega_{2}\right)$, where ω_{2} is the symplectic 2 -form defined in section 4.1.

Proof. Since ∇ is compatible with the Hermitian metric of E, for every $X, Y \in \mathfrak{X}(M)$, we have

$$
\begin{aligned}
\left(\left(\sigma_{\Gamma}, \xi\right)^{*} \mathrm{~d} \alpha\right)(X, Y) & =\mathrm{d}\left(\left(\sigma_{\Gamma}, \xi\right)^{*} \alpha\right)(X, Y)=\mathrm{d}(\operatorname{Im}\langle\xi, \nabla \xi\rangle)(X, Y) \\
& =X \operatorname{Im}\left\langle\xi, \nabla_{Y} \xi\right\rangle-Y \operatorname{Im}\left\langle\xi, \nabla_{X} \xi\right\rangle-\operatorname{Im}\left\langle\xi, \nabla_{[X, Y]} \xi\right\rangle \\
& =\operatorname{Im}\left(X\left\langle\xi, \nabla_{Y} \xi\right\rangle-Y\left\langle\xi, \nabla_{X} \xi\right\rangle-\left\langle\xi, \nabla_{[X, Y]} \xi\right\rangle\right) \\
& =2 \operatorname{Im}\left\langle\nabla_{X} \xi, \nabla_{Y} \xi\right\rangle+\operatorname{Im}\langle\xi, R(X, Y) \xi\rangle
\end{aligned}
$$

where R is the curvature tensor of ∇. Moreover, from the definition of the coordinates p_{i} given in section 2.2 and the local expression of ω_{2} given in section 4.1, it follows that pulling ω_{2} back along the section $\sigma_{\Gamma}: M \rightarrow C$ one obtains the curvature form of Γ : that is, $\sigma_{\Gamma}^{*} \omega_{2}=\mathrm{d} \omega_{\Gamma}=\Omega_{\Gamma}$. The result thus follows from the well known fact on the theory of connections according to which R is the image of Ω_{Γ} with respect to the homomorphism of Lie algebras induced by the representation under consideration: i.e., in our case $\left(\lambda_{r}\right)_{*}: \mathfrak{u}(1) \rightarrow \mathfrak{g l}(2, \mathbb{R})$, $\left(\lambda_{r}\right)_{*} \circ \Omega_{\Gamma}=r \mathrm{i} \Omega_{\Gamma}=R$.

6.3. Physical meaning of the interaction form

Let us now consider a pseudo-Riemannian metric \langle,\rangle_{M} on the base manifold M and a Lagrangian function $\mathcal{L} \in C^{\infty}\left(J^{1}\left(C \times_{M} E\right)\right)$. As is well known (see [4, section 5.1]), for every connection Γ on P and every section ξ of E, an $\operatorname{ad} P$-valued 1-form on M is defined: the current $J_{\Gamma, \xi}$, which appears in the inhomogeneous part of the Euler-Lagrange equations of \mathcal{L}. In particular, let $\mathcal{L}_{\text {YM }}$ be the classical Abelian Yang-Mills-Higgs Lagrangian, that is

$$
\mathcal{L}_{\mathrm{YM}}=\frac{1}{2}\langle\nabla \xi, \nabla \xi\rangle_{M, E}-\frac{1}{2} m^{2}\langle\xi, \xi\rangle_{E}-\frac{1}{2}\left\langle\Omega_{\Gamma}, \Omega_{\Gamma}\right\rangle_{M}
$$

where \langle,\rangle_{E} is the Hermitian pairing in E defined in section 6.2 and $\langle,\rangle_{M, E}$ denotes the pairing induced by \langle,\rangle_{E} and the metric tensor \langle,\rangle_{M} on E-valued differential forms of M. The corresponding current is given by (cf [4, section 5.2])

$$
J_{\Gamma, \xi}=\frac{1}{2 \mathrm{i}}\left(\langle\xi, \nabla \xi\rangle_{E}-\overline{\langle\xi, \nabla \xi\rangle_{E}}\right) .
$$

From the geometrical interpretation of the form α (see proposition 4 above) we obtain

$$
J_{\Gamma, \xi}=\left(\sigma_{\Gamma}, \xi\right)^{*} \alpha
$$

In other words, the interaction form can be understood as a 'universal' current of the Yang-Mills-Higgs action in the sense that its pull-back along a section (σ_{Γ}, ξ) of the interaction bundle provides the corresponding current.

7. The structure of $\mathcal{I}_{\text {gau }}(E)$

Proposition 6. Let $\pi_{E}: E \rightarrow M$ be the vector bundle associated to a $U(1)$ principal bundle $\pi: P \rightarrow M$ by a linear representation $\lambda: U(1) \rightarrow G L(V)$. We denote by $\mathcal{A}(V)$ the algebra of differential forms on V such that $i_{A^{*}} \Omega=0, i_{A^{*}} \mathrm{~d} \Omega=0$, where $A^{*} \in \mathfrak{X}(V)$ is the fundamental vector field associated to the standard basis $A \in \mathfrak{u}(1)$ under the linear representation λ. We have
(i) For every $\Omega \in \mathcal{A}(V)$ of degree d, there exists a unique differential d-form Ω_{E} on E such that for every $X_{1}, \ldots, X_{d} \in T_{(u, w)}(P \times V)$,

$$
\Omega_{E}\left(\left(\pi_{V}\right)_{*} X_{1}, \ldots,\left(\pi_{V}\right)_{*} X_{d}\right)=\Omega\left(\left(p r_{2}\right)_{*} X_{1}, \ldots,\left(p r_{2}\right)_{*} X_{d}\right)
$$

where $\pi_{V}: P \times V \rightarrow E=(P \times V) / U(1)$ is the canonical projection and $p r_{2}: P \times V \rightarrow$ V is the projection onto the second factor.
(ii) Furthermore, Ω_{E} is $\operatorname{Aut}(P)$ invariant: i.e. for every $\Phi \in \operatorname{Aut}(P), \Phi_{E}^{*} \Omega_{E}=\Omega_{E}$. Hence we have a homomorphism of \mathbb{Z}-graded algebras $\mathcal{A}(V) \rightarrow \mathcal{I}_{\text {aut }}(E), \Omega \mapsto \Omega_{E}$.

Proof. (i) The formula in the statement completely determines Ω_{E}. Behaving as in the proof of proposition 3(i), in order to prove the existence of Ω_{E} we only need to check that $p r_{2}^{*} \Omega$ is π_{V}-projectable, which follows from the hypotheses.
(ii) Every $\Phi \in$ Aut P acts on an arbitrary associated vector bundle by the same formula as in section 3.1: i.e. $\Phi_{E}([u, w])=[\Phi(u), w], u \in P, w \in V$, and it is easily seen that $\Phi_{E} \circ \pi_{V}=\pi_{V} \circ\left(\Phi \times 1_{V}\right)$. Hence, for every $X_{1}, \ldots, X_{d} \in T_{(u, w)}(P \times V)$ we have
$\left(\Phi_{E}^{*} \Omega_{E}\right)\left(\left(\pi_{V}\right)_{*} X_{1}, \ldots,\left(\pi_{V}\right)_{*} X_{d}\right)=\Omega\left(\left(p r_{2}\right)_{*}\left(\Phi \times 1_{V}\right)_{*} X_{1}, \ldots,\left(p r_{2}\right)_{*}\left(\Phi \times 1_{V}\right)_{*} X_{d}\right)$
$=\Omega\left(\left(p r_{2}\right)_{*} X_{1}, \ldots,\left(p r_{2}\right)_{*} X_{d}\right)$
$=\Omega_{E}\left(\left(\pi_{V}\right)_{*} X_{1}, \ldots,\left(\pi_{V}\right)_{*} X_{d}\right)$
since $p r_{2} \circ\left(\Phi \times 1_{V}\right)=p r_{2}$, thus concluding the proof.

Notation 7. Let $f: \mathbb{C} \rightarrow \mathbb{R}$ be the map $f(z)=\bar{z} z$. It is obvious that $f, \mathrm{~d} f \in \mathcal{A}(\mathbb{C})$, under the representation λ_{r} under consideration. Moreover, as a straightforward computation shows, we have

$$
\mathcal{A}(\mathbb{C})=f^{*} \Omega^{\bullet}(\mathbb{R})
$$

that is, f and $\mathrm{d} f$ are the generators of $\mathcal{A}(\mathbb{C})$. According to proposition 6(ii), we thus have $f_{E}, \mathrm{~d} f_{E} \in \mathcal{I}_{\text {aut }}(E)$. For the sake of simplicity, we shall write f instead of f_{E}. Note that f is the square of the norm of the Hermitian structure on E (cf section 6.2): i.e. $f([u, w])=\langle[u, w],[u, w]\rangle=\bar{w} w$.

Proposition 8. Assume M is connected and orientable by a volume form v_{m}. Then, $\mathcal{I}_{\text {gau }}(E)$ is generated over $\left(\pi_{E}, f\right)^{*} \Omega^{\bullet}(M \times \mathbb{R})$ by the globally defined forms $(\boldsymbol{x} \mathrm{d} \boldsymbol{y}-\boldsymbol{y} \mathrm{d} \boldsymbol{x}) \wedge \pi_{E}^{*} v_{m}$ and $\mathrm{d} \boldsymbol{x} \wedge \mathrm{d} \boldsymbol{y} \wedge \pi_{E}^{*} v_{m}$.

Proof. Every differential s-form Ω_{s} on E can be written as follows:

$$
\Omega_{s}=h_{I} \mathrm{~d} q^{I}+h_{J}^{x} \mathrm{~d} q^{J} \wedge \mathrm{~d} \boldsymbol{x}+h_{J}^{y} \mathrm{~d} q^{J} \wedge \mathrm{~d} \boldsymbol{y}+h_{K}^{x y} \mathrm{~d} q^{K} \wedge \mathrm{~d} \boldsymbol{x} \wedge \mathrm{~d} \boldsymbol{y}
$$

where $h_{I}, h_{J}^{x}, h_{J}^{y}, h_{K}^{x y} \in C^{\infty}(E)$, and I, J, K are multi-indices $L=\left(l_{1}, \ldots, l_{u}\right)$ of degree $|L|=u$ equal to $|I|=s,|J|=s-1$, and $|K|=s-2$, and we set

$$
\mathrm{d} q^{L}=\mathrm{d} q^{l_{1}} \wedge \cdots \wedge \mathrm{~d} q^{l_{u}}
$$

If $X=g A^{*}$, then $X_{E}=-r g(\boldsymbol{y} \partial / \partial \boldsymbol{x}-\boldsymbol{x} \partial / \partial \boldsymbol{y})$ and by imposing the invariance condition $L_{X_{E}} \Omega_{s}=0$ for $g=1$ we obtain the following system of equations:

$$
X_{E}\left(h_{I}\right)=0 \quad X_{E}\left(h_{J}^{x}\right)-r h_{J}^{y}=0 \quad X_{E}\left(h_{J}^{y}\right)+r h_{J}^{x}=0 \quad X_{E}\left(h_{K}^{x y}\right)=0 .
$$

Hence $h_{I}, h_{K}^{x y} \in\left(\pi_{E}, f\right)^{*} C^{\infty}(M \times \mathbb{R})$ and the second and third equations above yield

$$
h_{J}^{x}=A_{J} \boldsymbol{x}+B_{J} \boldsymbol{y} \quad h_{J}^{y}=A_{J} \boldsymbol{y}-B_{J} \boldsymbol{x}
$$

for certain functions $A_{J}, B_{J} \in\left(\pi_{E}, f\right)^{*} C^{\infty}(M \times \mathbb{R})$. Accordingly, we have

$$
\begin{aligned}
& \Omega_{s}=h_{I} \mathrm{~d} q^{I}+ A_{J} \mathrm{~d} q^{J} \wedge \\
&\left.+h_{K}^{x y} \mathrm{~d} q^{K} \wedge \mathrm{x}+\boldsymbol{y} \mathrm{d} \boldsymbol{y}\right)+B_{J} \mathrm{~d} q^{J} \wedge(\boldsymbol{y} \mathrm{~d} \boldsymbol{x}-\boldsymbol{x} \mathrm{d} \boldsymbol{y}) \\
& \boldsymbol{y}
\end{aligned}
$$

By again imposing the invariance condition for an arbitrary coefficient g, we obtain

$$
\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right) B_{J} \mathrm{~d} q^{J} \wedge \mathrm{~d} g+h_{K}^{x y} \mathrm{~d} q^{K} \wedge \mathrm{~d} g \wedge(\boldsymbol{x} \mathrm{~d} \boldsymbol{x}+\boldsymbol{y} \mathrm{d} \boldsymbol{y})=0
$$

Therefore, if $|J|<m$, then $B_{J}=0$, and if $|K|<m$, then $h_{K}^{x y}=0$ and the result follows.
Corollary 9. With the same notation as in propositions 6 and 8 we have

$$
\mathcal{I}_{\text {aut }}(E)=f^{*} \Omega^{\bullet}(\mathbb{R}) \simeq \mathcal{A}(\mathbb{C})
$$

8. Structure of $\mathcal{I}_{\text {gau }}\left(C \times_{M} E\right)$

Notation 10. Let \mathcal{K} be the subalgebra of $\Omega^{\bullet}\left(C \times_{M} E\right)$ defined by

$$
\mathcal{K}=\left(\pi_{E} \circ p r_{2}, f \circ p r_{2}\right)^{*} \Omega^{\bullet}(M \times \mathbb{R})
$$

with $p r_{1}: C \times_{M} E \rightarrow C, p r_{2}: C \times{ }_{M} E \rightarrow E$ being the canonical projections onto the factors. Roughly speaking, a form ξ belongs to \mathcal{K} if and only if its local expression in a coordinate system on $C \times_{M} E$, as in sections 2.2 and 2.3, is

$$
\xi=h_{i_{1} \ldots i_{s}} \mathrm{~d} q^{i_{1}} \wedge \cdots \wedge \mathrm{~d} q^{i_{s}}+g_{j_{1} \ldots j_{s-1}} \mathrm{~d} q^{j_{1}} \wedge \cdots \wedge \mathrm{~d} q^{j_{s-1}} \wedge \mathrm{~d} f
$$

where
$h_{i_{1} \ldots i_{s}}=h_{i_{1} \ldots i_{s}}\left(q^{1}, \ldots, q^{n}, \boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right) \quad g_{j_{1} \ldots j_{s-1}}=g_{j_{1} \ldots j_{s-1}}\left(q^{1}, \ldots, q^{n}, \boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right)$
are differentiable mappings depending on M and the Hermitian norm of E.
This algebra \mathcal{K}, together with the contact form α and the symplectic form $p r_{1}^{*} \omega_{2}$, allows us to state the characterization of $\mathcal{I}_{\text {gau }}\left(C \times_{M} E\right)$ more precisely.
Theorem 11. Let $\pi: P \rightarrow M$ be a U (1) principal bundle, let $p: C \rightarrow M$ be the bundle of connections of P, and let $\pi_{E}: E \rightarrow M$ be the vector bundle associated to P by the linear representation $\lambda_{r}, r \in \mathbb{N}$, of $U(1)$ on \mathbb{C} given by $\lambda_{r}(z)(w)=z^{r} w, z \in U(1), w \in \mathbb{C}$. With the above hypotheses and notation the forms $\alpha, \mathrm{d} \alpha, \omega_{2}$, generate the algebra of gauge-invariant differential forms on the interaction bundle over the algebra \mathcal{K}, where α is the interaction 1-form defined in proposition 3 and ω_{2} is the symplectic structure on C defined in section 4.1: that is,

$$
\begin{equation*}
\mathcal{I}_{\text {gau }}\left(C \times_{M} E\right)=\mathcal{K}\left[\alpha, \mathrm{d} \alpha, p r_{1}^{*} \omega_{2}\right] . \tag{9}
\end{equation*}
$$

Lemma 12. A differential form Ω on $C \times_{M} E$ is aut P invariant (resp. gauge invariant) if and only if $\varphi^{*} \Omega$ is aut P invariant (resp. gauge invariant) on $J^{1} P \times \mathbb{C}$. Moreover, $\mathcal{I}_{\text {aut }}\left(C \times{ }_{M} E\right)$ (resp. $\left.\mathcal{I}_{\text {gau }}\left(C \times_{M} E\right)\right)$ is isomorphic to the algebra of aut P-invariant (resp. gauge-invariant) differential forms Ξ on $J^{1} P \times \mathbb{C}$ such that:
(i) $i_{A} \cdot \Xi=0$
(ii) $L_{A} \cdot \Xi=0$.

Proof of Lemma 12. The first part of the statement follows from the fact that $\left(X^{(1)}, 0\right) \in$ $\mathfrak{X}\left(J^{1} P \times \mathbb{C}\right)$ is projectable onto \bar{X} for every $X \in$ aut P, and the second part follows by taking into account that the fibres of φ are connected.

Lemma 13. The algebra of gauge-invariant forms on $J^{1} P \times \mathbb{C}$ is given by

$$
\left(\pi_{1} \times 1_{\mathbb{C}}\right)^{*} \Omega^{\bullet}(M \times \mathbb{C})[\theta, \mathrm{d} \theta]
$$

that is, every gauge s-form Ξ on $J^{1} P \times \mathbb{C}$ can be written as

$$
\begin{equation*}
\Xi=\Xi_{s}+\Xi_{s-1} \wedge \mathrm{~d} x+\Xi_{s-1}^{\prime} \wedge \mathrm{d} y+\Xi_{s-2} \wedge \mathrm{~d} x \wedge \mathrm{~d} y \tag{10}
\end{equation*}
$$

where $\Xi_{s}, \Xi_{s-1}, \Xi_{s-1}^{\prime}, \Xi_{s-2}$ are forms of degree $s, s-1, s-1, s-2$, respectively, on $J^{1} P \times \mathbb{C}$, which are polynomials in $\theta, \mathrm{d} \theta$ whose coefficients are $\left(\pi_{1} \circ p r_{1}\right)$-horizontal differential forms, $p r_{1}: J^{1} P \times \mathbb{C} \rightarrow J^{1} P$ being the canonical projection onto the first factor.

Proof of Lemma 13. First, let us study the gauge invariance on $J^{1} P$. Taking into account the local expression of the structure form $\theta=\mathrm{d} t-t_{i} \mathrm{~d} q^{i}$ in a coordinate system (q^{i}, t, t_{i}) of $J^{1} P$, it is easy to see that every s-form Ξ on $J^{1} P$ can be locally written as

$$
\begin{aligned}
\Xi=\sum_{|I|+|J|=s} & f_{I J}\left(\mathrm{~d} q^{1}\right)^{i_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{i_{n}} \wedge\left(\mathrm{~d} t_{1}\right)^{j_{1}} \wedge \cdots \wedge\left(\mathrm{~d} t_{n}\right)^{j_{n}} \wedge \theta \\
& +\sum_{|K|+|L|=s} h_{K L}\left(\mathrm{~d} q^{1}\right)^{k_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{k_{n}} \wedge\left(\mathrm{~d} t_{1}\right)^{l_{1}} \wedge \cdots \wedge\left(\mathrm{~d} t_{n}\right)^{l_{n}}
\end{aligned}
$$

with $f_{I J}, h_{K L} \in C^{\infty}\left(J^{1} P\right)$, where $I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{n}\right), K=\left(k_{1}, \ldots, k_{n}\right)$, $L=\left(l_{1}, \ldots, l_{n}\right)$, are Boolean multi-indices: i.e. $I, J, K, L \in\{0,1\}^{n}$, and $|I|=i_{1}+\cdots+i_{n}$. Following the notation in section 3.2, if $X=g(\partial / \partial t), g \in C^{\infty}(M)$, is the expression of a gauge field on P, its lifting to the jet bundle is

$$
X^{(1)}=g \frac{\partial}{\partial t}+\frac{\partial g}{\partial q^{i}} \frac{\partial}{\partial t_{i}} .
$$

If we let $g=1$, the condition of gauge invariance tells us the following:

$$
\begin{aligned}
0=L_{X^{(1)}} \Xi= & \frac{\partial f_{I J}}{\partial t}\left(\mathrm{~d} q^{1}\right)^{i_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{i_{n}} \wedge\left(\mathrm{~d} q_{1}\right)^{j_{1}} \wedge \cdots \wedge\left(\mathrm{~d} t_{n}\right)^{j_{n}} \wedge \theta \\
& +\frac{\partial h_{K L}}{\partial t}\left(\mathrm{~d} q^{1}\right)^{k_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{k_{n}} \wedge\left(\mathrm{~d} q_{1}\right)^{l_{1}} \wedge \cdots \wedge\left(\mathrm{~d} t_{n}\right)^{l_{n}}
\end{aligned}
$$

Hence $\partial f_{I J} / \partial t=0, \partial h_{K L} / \partial t=0$. For $g=q^{a}, a=1, \ldots, n$, we obtain $\partial f_{I J} / \partial q^{a}=0$, $\partial h_{K L} / \partial q^{a}=0$ and we conclude that $f_{I J}, h_{K L} \in C^{\infty}(M), \forall I, J, K, L$. Now, let us consider $g=\frac{1}{2}\left(q^{1}\right)^{2}$ in the definition of X. The condition of gauge invariance on the fibre $p^{-1}\left(q_{0}\right)$ yields

$$
\begin{gathered}
0=\left.L_{X^{(1)}} \Xi\right|_{p^{-1}\left(q_{0}\right)}=f_{I J}\left(\mathrm{~d} q^{1}\right)^{i_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{i_{n}} \wedge\left(\mathrm{~d} q_{1}\right)^{j_{1}} \wedge \cdots \wedge\left(\mathrm{~d} t_{n}\right)^{j_{n}} \wedge \theta \\
+h_{K L}\left(\mathrm{~d} q^{1}\right)^{k_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{k_{n}} \wedge\left(\mathrm{~d} q_{1}\right)^{l_{1}} \wedge \cdots \wedge\left(\mathrm{~d} t_{n}\right)^{l_{n}} .
\end{gathered}
$$

Hence if J is such that $j_{1}=1$, then $i_{1}=1$, and if $l_{1}=1$ then $k_{1}=1$. In general, by considering an arbitrary index $1 \leqslant a \leqslant n$ and $g=\frac{1}{2}\left(q^{a}\right)^{2}$ we conclude that $j_{a}=1$ implies $i_{a}=1$ and, similarly, $l_{a}=1$ implies $k_{a}=1$. Therefore, Ξ can be rewritten as

$$
\begin{aligned}
& \Xi=\sum_{|I|+2|J|=s} \tilde{f}_{I J}\left(\mathrm{~d} q^{1}\right)^{i_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{i_{n}} \wedge\left(\mathrm{~d} q^{1} \wedge \mathrm{~d} t_{1}\right)^{j_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n} \wedge \mathrm{~d} t_{n}\right)^{j_{n}} \wedge \theta \\
&+\sum_{|K|+2|L|=s} \tilde{h}_{K L}\left(\mathrm{~d} c q^{1}\right)^{k_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{k_{n}} \wedge\left(\mathrm{~d} q^{1} \wedge \mathrm{~d} t_{1}\right)^{l_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n} \wedge \mathrm{~d} t_{n}\right)^{l_{n}}
\end{aligned}
$$

with $i_{u}+j_{u} \leqslant 1, k_{u}+l_{u} \leqslant 1$ for $u=1, \ldots, n$.
If we take $g=q^{1} \cdot q^{a}, 1<a \leqslant n$, in the definition of X, the gauge-invariance condition now says

$$
\begin{aligned}
& 0=\left.L_{X^{(1)}} \Xi\right|_{p^{-1}\left(q_{0}\right)}=\tilde{f}_{I J}\left(\mathrm{~d} q^{1}\right)^{i_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{i_{n}} \wedge\left(\mathrm{~d} q^{1} \wedge \mathrm{~d} q^{a}\right)^{j_{1}} \\
& \wedge \cdots \wedge\left(\mathrm{~d} q^{n} \wedge \mathrm{~d} t_{n}\right)^{j_{n}} \wedge \theta+\tilde{f}_{I J}\left(\mathrm{~d} q^{1}\right)^{i_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{i_{n}} \wedge\left(\mathrm{~d} q^{1} \wedge \mathrm{~d} t_{1}\right)^{j_{1}} \\
& \wedge \cdots \wedge\left(\mathrm{~d} q^{a} \wedge \mathrm{~d} q^{1}\right)^{j_{a}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n} \wedge \mathrm{~d} t_{n}\right)^{j_{n}} \wedge \theta+\tilde{h}_{K L}\left(\mathrm{~d} q^{1}\right)^{k_{1}} \\
& \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{k_{n}} \wedge\left(\mathrm{~d} q^{1} \wedge \mathrm{~d} q^{a}\right)^{l_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n} \wedge \mathrm{~d} t_{n}\right)^{l_{n}}+\tilde{h}_{K L}\left(\mathrm{~d} q^{1}\right)^{k_{1}} \\
& \wedge \cdots \wedge\left(\mathrm{~d} q^{n}\right)^{k_{n}} \wedge\left(\mathrm{~d} t_{1}\right)^{l_{1}} \wedge \cdots \wedge\left(\mathrm{~d} q^{a} \wedge \mathrm{~d} q^{1}\right)^{l_{a}} \wedge \cdots \wedge\left(\mathrm{~d} q^{n} \wedge \mathrm{~d} t_{n}\right)^{l_{n}} .
\end{aligned}
$$

That is, $\tilde{f}_{I J}-\tilde{f}_{I J^{\prime}}=0$ whenever
$J=\left(1, j_{2}, \ldots, j_{a-1}, 0, j_{a+1}, \ldots, j_{n}\right) \quad J^{\prime}=\left(0, j_{2}, \ldots, j_{a-1}, 1, j_{a+1}, \ldots, j_{n}\right)$
and $\tilde{h}_{K L}-\tilde{h}_{K L^{\prime}}=0$ whenever
$L=\left(1, l_{2}, \ldots, l_{a-1}, 0, l_{a+1}, \ldots, l_{n}\right) \quad L^{\prime}=\left(0, l_{2}, \ldots, l_{a-1}, 1, l_{a+1}, \ldots, l_{n}\right)$.
Accordingly, if Ξ contains a summand of the form $\omega_{s-2} \wedge \mathrm{~d} q^{a} \wedge \mathrm{~d} t_{a}$, where $a=1, \ldots, n$ is an arbitrary fixed index, then Ξ contains the summand $\omega_{s-2} \wedge \mathrm{~d} q^{1} \wedge \mathrm{~d} t_{1}$, and conversely. Recalling that $\mathrm{d} \theta=\mathrm{d} q^{i} \wedge \mathrm{~d} t_{i}$, we have that Ξ is a polynomial of θ and $\mathrm{d} \theta$: i.e. $\mathcal{I}_{\text {gau }}\left(J^{1} P\right)=$ $\pi_{1}^{*} \Omega^{\bullet}(M)[\theta, \mathrm{d} \theta]$.

Finally, we note that the gauge group Gau P acts trivially on \mathbb{C} : that is, the action on $J^{1} P \times \mathbb{C}$ is only defined on the jet bundle. Hence, the result follows.

Proof of Theorem 11. According to the previous lemmas we are led to study the conditions of φ-projectability $i_{A} \cdot \Xi=0, L_{A} \cdot \Xi=0$, of a form

$$
\begin{equation*}
\Xi=\Xi_{s}+\Xi_{s-1} \wedge \mathrm{~d} x+\Xi_{s-1}^{\prime} \wedge \mathrm{d} y+\Xi_{s-2} \wedge \mathrm{~d} x \wedge \mathrm{~d} y \tag{11}
\end{equation*}
$$

with $\Xi_{s}, \Xi_{s-1}, \Xi_{s-1}^{\prime}, \Xi_{s-2}$ as in lemma 13. The vector field A^{\bullet} is as follows:

$$
A^{\bullet}=\frac{\partial}{\partial t}+r\left(y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}\right) .
$$

Hence

$$
\begin{gathered}
i_{A} \cdot \Xi=i_{\partial / \partial t} \Xi_{s}+\left(i_{\partial / \partial t} \Xi_{s-1}\right) \wedge \mathrm{d} x+(-1)^{s-1} r y \Xi_{s-1}^{\prime}+\left(i_{\partial / \partial t} \Xi_{s-1}^{\prime}\right) \wedge \mathrm{d} y-(-1)^{s-1} r x \Xi_{s-1}^{\prime} \\
+\left(i_{\partial / \partial t} \Xi_{s-2}\right) \wedge \mathrm{d} x \wedge \mathrm{~d} y+(-1)^{s} r \Xi_{s-2} \wedge(y \mathrm{~d} y+x \mathrm{~d} x)
\end{gathered}
$$

vanishes if and only if

$$
\begin{aligned}
& i_{\partial / \partial t} \Xi_{s-2}=0 \\
& i_{\partial / \partial t} \Xi_{s-1}+(-1)^{s} r x \Xi_{s-2}=0 \\
& i_{\partial / \partial t} \Xi_{s-1}^{\prime}+(-1)^{s} r y \Xi_{s-2}=0 \\
& i_{\partial / \partial t} \Xi_{s}+(-1)^{s-1} r\left(y \Xi_{s-1}-x \Xi_{s-1}^{\prime}\right)=0 .
\end{aligned}
$$

As $\theta(\partial / \partial t)=1$, from the first equation above we conclude that Ξ_{s-2} depends only on $\mathrm{d} \theta$. From the last three equations we obtain

$$
\begin{align*}
& \Xi_{s-1}=(-1)^{s-1} r x \theta \wedge \Xi_{s-2}+\xi_{s-1} \\
& \Xi_{s-1}^{\prime}=(-1)^{s-1} r y \theta \wedge \Xi_{s-2}+\xi_{s-1}^{\prime} \tag{12}\\
& \Xi_{s}=(-1)^{s} r \theta \wedge\left(y \xi_{s-1}-x \xi_{s-1}^{\prime}\right)+\xi_{s}
\end{align*}
$$

where $\xi_{s-1}, \xi_{s-1}^{\prime}, \xi_{s}$ are polynomials in $\mathrm{d} \theta$ whose coefficients are $\left(\pi_{1} \circ p r_{1}\right)$-horizontal forms. Moreover, substituting the expressions above for $\Xi_{s-1}, \Xi_{s-1}^{\prime}, \Xi_{s}$ into formula (11) and simplifying it, we have

$$
\begin{aligned}
& L_{A} \cdot \Xi=L_{A} \cdot \xi_{s}+(-1)^{s-1} r \theta \wedge\left(r y \xi_{s-1}^{\prime}+x L_{A} \cdot \xi_{s-1}^{\prime}+r x \xi_{s-1}-y L_{A} \cdot \xi_{s-1}\right) \\
& \quad-(-1)^{s} r \theta \wedge L_{A} \cdot \Xi_{s-2} \wedge(x \mathrm{~d} x+y \mathrm{~d} y)+L_{A} \cdot \xi_{s-1} \wedge \mathrm{~d} x \\
&+L_{A} \cdot \xi_{s-1}^{\prime} \wedge \mathrm{d} y+r\left(\xi_{s-1} \wedge \mathrm{~d} y-\xi_{s-1}^{\prime} \wedge \mathrm{d} x\right)+L_{A} \cdot \Xi_{s-2} \wedge \mathrm{~d} x \wedge \mathrm{~d} y
\end{aligned}
$$

Hence $L_{A} \cdot \Xi=0$ if and only if

$$
\begin{aligned}
& L_{A} \cdot \Xi_{s-2}=0 \\
& L_{A} \cdot \xi_{s}=0 \\
& L_{A} \cdot \xi_{s-1}-r \xi_{s-1}^{\prime}=0 \\
& L_{A} \cdot \xi_{s-1}^{\prime}+r \xi_{s-1}=0 .
\end{aligned}
$$

As $\mathrm{d} \theta$ does not depend on the variable t, the first two equations above tell us that the coefficients of the differential forms Ξ_{s-2}, ξ_{s} are invariant under rotations around the origin of the plane \mathbb{C} : that is, their dependence on x, y is via the mapping $f=x^{2}+y^{2}$. On the other hand, the last two equations can be seen as a system of partial differential equations and it is not difficult to check that this system is completely integrable and its solution is

$$
\begin{align*}
\xi_{s-1} & =x \zeta_{s-1}+y \zeta_{s-1}^{\prime} \tag{13}\\
\xi_{s-1}^{\prime} & =y \zeta_{s-1}-x \zeta_{s-1}^{\prime}
\end{align*}
$$

$\zeta_{s-1}, \zeta_{s-1}^{\prime}$ being polynomic $s-1$ forms on $\mathrm{d} q^{\prime} s$ and $\mathrm{d} \theta$ whose coefficients are functions of $q^{1}, \ldots, q^{n}, x^{2}+y^{2}$.

Taking into account formulae (11)-(13), we finally obtain

$$
\begin{aligned}
\Xi=\xi_{s}-\zeta_{s-1}^{\prime} & \wedge\left(r\left(y^{2}+x^{2}\right) \theta-y \wedge \mathrm{~d} x+x \mathrm{~d} y\right)+\zeta_{s-1} \wedge(x \mathrm{~d} x+y \mathrm{~d} y) \\
& +\Xi_{s-2} \wedge(r x \mathrm{~d} x \wedge \theta+r y \mathrm{~d} y \wedge \theta+\mathrm{d} x \wedge \mathrm{~d} y)
\end{aligned}
$$

which projects, by virtue of the local expression of the contact form α (cf proposition 3), onto the form of $C \times_{M} E$,

$$
\xi_{s}-\frac{1}{2} r\left(\boldsymbol{x}^{2}+y^{2}\right) \Xi_{s-2} \wedge \omega_{2}-\zeta_{s-1}^{\prime} \wedge \alpha+\frac{1}{2} \zeta_{s-1} \wedge \mathrm{~d} f+\frac{1}{2} \Xi_{s-2} \wedge \mathrm{~d} \alpha
$$

thus concluding the proof.

Corollary 14. The algebra of aut P-invariant forms on $C \times_{M} E$ is given by

$$
\mathcal{I}_{\text {aut }}\left(C \times_{M} E\right)=f^{*} \Omega^{\bullet}(\mathbb{R})\left[\alpha, \mathrm{d} \alpha, p r_{1}^{*} \omega_{2}\right]
$$

Proof. By virtue of propositions 3(ii) and 6(ii), respectively, the form α and the function f are aut P invariant. From theorem 11 and [8, theorem 3.1], the result thus follows.

9. Concluding remarks

Remark 15. The fundamental relation among α, f and the symplectic form ω_{2} on $C \times_{M} E$ is

$$
\mathrm{d} f \wedge \alpha=f\left(\mathrm{~d} \alpha-r f \omega_{2}\right)
$$

This follows from proposition 6 and formula (7) in proposition 3, taking into account the local expression of $\omega_{2}=\mathrm{d} p_{i} \wedge \mathrm{~d} q^{i}$.

Notation 16. Let Z be the zero section of E : i.e. $Z=f^{-1}(0)$. We set $Z_{C}=C \times_{M} Z$, $\mathcal{O}=C \times_{M} E-Z_{C}$. It follows that \mathcal{O} is a dense open subset of the interaction bundle. We denote by $\left(\pi_{E} \circ p r_{2}, f \circ p r_{2}\right)_{\mathcal{O}}: \mathcal{O} \rightarrow M \times \mathbb{R}$ the restriction of $\left(\pi_{E} \circ p r_{2}, f \circ p r_{2}\right)$ to \mathcal{O}.

Remark 17. From remark 15 it follows that $\left.\mathrm{d} \alpha\right|_{\mathcal{O}}=\left.\left(f^{-1} \mathrm{~d} f \wedge \alpha+r f \omega_{2}\right)\right|_{\mathcal{O}}$. Hence,

$$
\mathcal{I}_{\text {gau }}(\mathcal{O})=\mathcal{K}\left[\alpha, p r_{1}^{*} \omega_{2}\right] .
$$

Remark 18. Also, in $\mathcal{K}\left[\alpha, \mathrm{d} \alpha, \omega_{2}\right]$, we only need to take one factor for $\mathrm{d} \alpha$, since

$$
\mathrm{d} \alpha \wedge \mathrm{~d} \alpha=r \omega_{2} \wedge\left(r f \omega_{2}+2 \mathrm{~d} f \wedge \alpha\right)
$$

and the factor $\alpha \wedge \mathrm{d} \alpha$ does not appear either since $\alpha \wedge \mathrm{d} \alpha=r f \alpha \wedge \omega_{2}$. For the sake of simplicity we shall usually identify $\Omega^{\bullet}(C)$ with $p r_{1}^{*} \Omega^{\bullet}(C)$, and $\Omega^{\bullet}(E)$ with $p r_{2}^{*} \Omega^{\bullet}(E)$. Accordingly, the general expression for a gauge-invariant n-form Ω_{n} on the interaction bundle is
$\Omega_{n}=\sum_{j=0}^{\left[\frac{n}{2}\right]} \eta_{n-2 j} \wedge\left(\omega_{2}\right)^{j}+\sum_{j=0}^{\left[\frac{n-1}{2}\right]} \eta_{n-1-2 j}^{\prime} \wedge\left(\omega_{2}\right)^{j} \wedge \alpha+\sum_{j=0}^{\left[\frac{n-2}{2}\right]} \eta_{n-2-2 j}^{\prime \prime} \wedge\left(\omega_{2}\right)^{j} \wedge \mathrm{~d} \alpha$
where $\eta, \eta^{\prime}, \eta^{\prime \prime} \in\left(\pi_{E}, f\right)^{*} \Omega^{\bullet}(M \times \mathbb{R})$. Also note that for $n>2 m, \Omega_{n}=0$, necessarily.
Remark 19. On \mathcal{O}, a proof of corollary 5 can also be given by using the formula of remark 15 . In fact, if ξ is a non-vanishing section of E on an open subset $U \subset M$, on U we can define an ordinary 1 -form by setting $\nabla_{X} \xi=\eta(X) \xi$, and taking into account that $\xi^{*}(\mathrm{~d} f)=\mathrm{d}\langle\xi$, $\xi\rangle$ we have

$$
\begin{aligned}
\left(\sigma_{\Gamma}, \xi\right)^{*}(\mathrm{~d} f \wedge \alpha)(X, Y) & =((\mathrm{d}\langle\xi, \xi\rangle) \wedge(\operatorname{Im}\langle\xi, \nabla \xi\rangle))(X, Y) \\
& =X\langle\xi, \xi\rangle \cdot \operatorname{Im}\left\langle\xi, \nabla_{Y} \xi\right\rangle-Y\langle\xi, \xi\rangle \cdot \operatorname{Im}\left\langle\xi, \nabla_{X} \xi\right\rangle \\
& =\operatorname{Im}\left(X\langle\xi, \xi\rangle \cdot \operatorname{Im}\left\langle\xi, \nabla_{Y} \xi\right\rangle-Y\langle\xi, \xi\rangle \cdot\left\langle\xi, \nabla_{X} \xi\right\rangle\right) \\
& =\operatorname{Im}\left(\left\langle\nabla_{X} \xi, \xi\right\rangle\left\langle\xi, \nabla_{Y} \xi\right\rangle-\left\langle\nabla_{Y} \xi, \xi\right\rangle\left\langle\xi, \nabla_{X} \xi\right\rangle\right) \\
& =\operatorname{Im}\left((\overline{\eta(X)} \eta(Y)-\eta(X) \overline{\eta(Y)})\langle\xi, \xi\rangle^{2}\right) \\
& =2 \operatorname{Im}(\overline{\eta(X)} \eta(Y))\langle\xi, \xi\rangle^{2} \\
& =2\left(\operatorname{Im}\left\langle\nabla_{X} \xi, \nabla_{Y} \xi\right\rangle\right)\langle\xi, \xi\rangle \\
& =\langle\xi, \xi\rangle\left[\left(\left(\sigma_{\Gamma}, \xi\right)^{*} \mathrm{~d} \alpha\right)(X, Y)-r\langle\xi, \xi\rangle\left(\sigma_{\Gamma}^{*} \omega_{2}\right)(X, Y)\right] .
\end{aligned}
$$

Acknowledgments

The work of LHE and JMM has been partially supported by DGESIC (Spain) under grant no PB98-0533.

References

[1] Frank Adams J 1969 Lectures on Lie Groups (New York: Benjamin)
[2] Atiyah M F 1957 Complex analytic connections in fibre bundles Trans. Am. Math. Soc. 85 181-207
[3] Betounes D 1989 The geometry of gauge-particle field interaction: a generalization of Utiyama's theorem J. Geom. Phys. 16 107-25
[4] Bleecker D 1981 Gauge Theory and Variational Principles (Reading, MA: Addison-Wesley)
[5] Eck D J 1981 Gauge-natural bundles and generalized gauge theories Mem. Am. Math. Soc. 247
[6] García P L 1977 Gauge algebras, curvature and symplectic geometry J. Diff. Geom. 12 209-27
[7] Hernández Encinas L and Muñoz Masqué J 1994 Symplectic structure and gauge invariance on the cotangent bundle J. Math. Phys. 35 426-34
[8] Hernández Encinas L and Muñoz Masqué J 1994 Gauge invariance on the bundle of connections of a $U(1)$ principal bundle C. R. Acad. Sci., Paris 318 1133-8
[9] Hernández Encinas L, Montoya Vitini F and Muñoz Masqué J 1995 Invariant differential forms on $K(P) \times{ }_{M} E$ Proc. 40th Yamada Conf., 20th Int. Coll. on Group Theoretical Methods in Physics (Toyonaka, Japan, 1994) ed A Arima, T Eguchi and N Nakanishi (Singapore: World Scientific) (Japan: Yamada Science Foundation) pp 219-22
[10] Kobayashi S and Nomizu K 1963 Foundations of Differential Geometry I (New York: Wiley)
[11] Mickelsson J 1989 Current Algebras and Groups (New York: Plenum)
[12] Muñoz Masqué J 1984 Formes de structure et transformations infinitésimales de contact d'ordre supérieur C. R. Acad. Sci., Paris 298 185-8
[13] Ne'eman Y and Sternberg S 1991 Internal supersymmetry and superconnections Symplectic Geometry and Mathematical Physics (Progress in Mathematics vol 99) (Cambridge, MA: Birkhäuser Boston) pp 326-54
[14] Utiyama R 1956 Invariant theoretical interpretation of interaction Phys. Rev. 101 1597-607

