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Abstract. The structure of the algebra of gauge-invariant differential forms on the bundleC×ME

is determined, where p : C → M is the bundle of connections of a U(1) principal bundle
π :P → M , and E → M is the associated bundle to P by the representation λr , r ∈ N, of U(1)
on C given by λr (z)(w) = zrw, z ∈ U(1), w ∈ C.

1. Introduction

The aim of this paper is to describe the geometric structure underlying the interaction bundle
(i.e. the bundle for interacting particle and gauge fields) in the particular case of U(1) principal
bundles. As is well known, the bundle of connections of an arbitrary principal G-bundle
π : P → M is an affine bundle p : C = C(P ) → M modelled over the vector bundle
T ∗M ⊗ adP → M (cf [2, 5, 6]), where adP → M is the adjoint bundle: i.e. the bundle
associated to P by the adjoint representation of G on its Lie algebra g. In the particular case
G = U(1), which corresponds to classical electromagnetism, the adjoint bundle is canonically
isomorphic to the trivial line bundle so that C is an affine bundle modelled over the cotangent
bundle T ∗M . In two previous papers [7, 8] we proved that, in this case, C is endowed with
a canonical symplectic form ω2 that generates over �•(M) the algebra of differential forms
on C which are invariant under the natural representation of the gauge algebra of P (that is,
gauP = �(M, adP)) onC. The initial motivation for that result was the geometric formulation
of Utiyama’s theorem (cf [3, 4, 6, 14]). If E → M is the vector bundle associated to P by
a linear representation of G on a finite-dimensional real vector space V , the fibred product
C ×M E is usually called the interaction bundle since the Lagrangian for a particle field
interacting with a gauge field is defined on it. In fact, this is the bundle on which Utiyama’s
foundational paper [14] is based (also see [13]), so that it is natural to extend the results of [8]
to the interaction bundle in analysing the geometric structure of gauge forms. Moreover, in
dealing with the Abelian case we confine ourselves to the linear representations λr , r ∈ N, of
U(1) on C given by λr(z)(w) = zrw, z ∈ U(1), w ∈ C, as they are the inequivalent irreducible
real representations of U(1) (e.g., see [1, 3.78]).

Igau(C) (resp. Igau(E), resp. Igau(C ×M E)) denotes the algebra of gauge-invariant
differential forms on C (resp. E, resp. C ×M E). We have two homomorphisms of C∞(M)-
algebras, Igau(C) → Igau(C ×M E), Igau(E) → Igau(C ×M E). The most outstanding
novelty is that Igau(C ×M E) is not generated by Igau(C) and Igau(E): roughly speaking, in
order to generate all gauge-invariant differential forms on the interaction bundle it is necessary
to add to the above forms a specific 1-form α ∈ �1(C ×M E), called the interaction 1-form,
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which depends on the integer r (i.e. on the charge of the particle) and its exterior differential.
Accordingly, this form allows one to distinguish different representations by means of the
algebra of gauge-invariant forms.

In section 2 we recall some properties of the bundle of connections of a principal bundle
and introduce the standard coordinate systems on the bundles C, E, which we use throughout.
In section 3 we define the action of the group of automorphisms of P on C, on E and on the
interaction bundle, and we obtain the corresponding infinitesimal versions of these actions.
This leads us to introduce the notions of gauP -invariant and autP -invariant differential forms
on the interaction bundle in section 4. In section 5 it is proved that J 1P × C is a U(1)
principal bundle over C ×M E. In section 6 this bundle structure is used in order to give a
direct definition of the interaction 1-form α as being the projection onto C ×M E of a certain
differential form J 1P ×M C, explicitly defined in terms of the structure form on the 1-jet
bundle. The geometric interpretation of the form α is closely related to the classification of the
Lagrangians on J 1(C ×M E) which are gauge invariant in the Utiyama sense (cf [3]). More
precisely, for every connection � on P and every section ξ ∈ �(M,E), (σ�, ξ)∗α coincides
with the imaginary part of 〈ξ,∇ξ〉, where σ� : M → C is the section induced by � (see the
notation below), ∇ is the covariant derivative induced by� onE, and 〈,〉 stands for the standard
Hermitian structure on E. The physical meaning of α is also relevant: it is shown to be the
‘universal’ current of the Yang–Mills–Higgs classical action (see [4, ch 5] and section 6.3
below).

Let A be the standard basis of g = u(1) (see section 2.2 below for the notation), and let
A∗ ∈ X(V ) be the fundamental vector field associated to A under a linear representation. We
set A(V ) = {� ∈ �•(V ); iA∗� = 0, iA∗ d� = 0}. In section 7 we prove that every differential
form � ∈ A(V ) induces a differential form �E ∈ �•(E), which is not only gauge invariant
but also invariant under the Lie algebra of all infinitesimal automorphisms of P . In this way,
we obtain all autP -invariant differential forms on E and, furthermore, the structure of Igau(E)

is determined.
Section 8 is devoted to the statement and proof of the characterization of Igau(C ×M E);

as a consequence, we also determine the algebra of autP -invariant forms on C ×M E. Finally,
in section 9 we obtain the basic relations among the forms which generate the algebra of
gauge-invariant forms.

2. Preliminaries and notation

2.1. The bundle of connections of a principal G-bundle

Let π : P → M be a principal G-bundle over an m-dimensional, connected C∞ manifold M .
We set TGP = (T P )/G, and we denote by [X] the orbit of X ∈ T P in TGP . The sections
of TGP correspond with the G-invariant vector fields on P , and π -vertical G-invariant vector
fields onP can be identified to the sections of the adjoint bundle. We have an exact sequence of
vector bundles over M ([2]), 0 → adP → TGP → TM → 0. Connections on P correspond
with the splittings of this sequence. Hence, connections on P are the sections of an affine
bundle p : C = C(P ) → M modelled over T ∗M ⊗ adP . We also denote by σ� : M → C

the section of the bundle of connections induced from �.

2.2. Coordinates in C

Let π : P → M be a U(1) principal bundle and let A be the standard basis of u(1): that
is, the vector field corresponding to the 1-parameter subgroup R → U(1), t �→ exp(it).
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As U(1) is Abelian, the fundamental vector field A∗ ∈ X(P ) is U(1) invariant. Set
Ã = [A∗]. Let (W ; q1, . . . , qm), m = dim M , be an open coordinate domain of M on
which π−1(W) � W × U(1). We parametrize the points in U(1) as exp(it), 0 � t � 2π .
Thus, the functions (q1 ◦ π, . . . , qm ◦ π, t) are coordinates on P . We usually identify qi ◦ π

to qi . A linear map " : TqM → (TGP )q is a section of π∗ if and only if scalars λ1, . . . , λm

exist such that "(∂/∂qi)q = (∂/∂qi)q + λiÃq , 1 � i � m. We define p1, . . . , pm on p−1(W)

by pi(") = −λi , or equivalently, for every connection �, σ�(∂/∂qi) = ∂/∂qi − (pi ◦ σ�)Ã.
Hence, the functions qi (or more properly qi ◦ p) and pi , 1 � i � m, are coordinates on
p−1(W). The bundle of connections of M × U(1) can be identified with T ∗M , and then the
functions (qi, pi) have their usual meaning (cf [7, 8]).

2.3. Coordinates in E

Let πE : E → M be the vector bundle associated to the linear representation λr defined in
the introduction and let (W ; qi) be as in section 2.2. We denote by [u,w] the orbit of the pair
(u,w) ∈ P × C in E = (P × C)/U(1), and let s0 : W → P be the section corresponding
to the trivialization π−1(W) � W × U(1). We define functions x, y on π−1

E (W) by setting
e = [s0(πEe),x(e) + iy(e)] where e ∈ π−1

E (W) and (q1, . . . , qm,x,y) are coordinates on
π−1
E (W).

2.4. Infinitesimal contact transformations

Let p : N → M be an arbitrary fibred manifold: i.e. p is a surjective submersion. We denote
by p1 : J 1N → M the 1-jet bundle of local sections of p. For every section s : W → N of
p defined on an open subset W ⊆ M , we denote by j 1s : W → J 1N its jet prolongation. Set
dim N = m + n. Every fibred coordinate system (qi, yj ), 1 � i � m, 1 � j � n, for the
projectionp induces a coordinate system (qi, yj , y

j

i ) on J 1N by yji (j
1
x s) = (∂(yj ◦s)/∂qi)(x).

A differential 1-form θ on J 1N is a contact form if (j 1s)∗θ = 0 for every local section s of
p. The set of all contact forms is a differential system C of rank n locally generated by
θj = dyj − y

j

i dqi , 1 � j � n. A vector field X ∈ X(J 1N) is said to be an infinitesimal
contact transformation if LXC ⊆ C. For every vector field X ∈ X(N) there exists a unique
infinitesimal contact transformation X(1) ∈ X(J 1N) projecting onto X via the projection
p10 : J 1N → J 0N = N , and the mapping X(N) → X(J 1N), X �→ X(1), is a Lie algebra
monomorphism (e.g., see [12]).

3. The basic liftings

3.1. The action of the group of automorphism on C ×M E

Let us denote by AutP the group of automorphisms of P . Every . ∈ AutP induces a unique
diffeomorphism φ : M → M , such that π ◦ . = φ ◦ π . The mapping . �→ φ is a group
homomorphism whose kernel is the gauge group, GauP .

Letω� be the connection form of a connection� onP . Given. ∈ AutP we set.·� = �′,
where (.−1)∗ω� = ω�′ (see [10, section 2.6.2]). As (ω�′)|π−1(φx) depends only on (ω�)|π−1(x),
we can define a unique diffeomorphism .C : C → C such that for every connection � and
every x ∈ M , .C(�(x)) = (. ·�)(x). We have (1) p◦.C = φ ◦p, (2) (.◦0)C = .C ◦0C ,
∀.,0 ∈ AutP .

Similarly, AutP acts on E and on C ×M E (notation of section 2.3) by setting
.E([u,w]) = [.(u),w], .̄(�x, [u,w]) = (.C(�x),.E([u,w])), respectively, for every
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. ∈ AutP , with p(�x) = π(u) = q. The definition of .̄ makes sense since
p(.C(�x)) = πE(.E([u,w])) = q.

3.2. The homomorphism autP → X(C ×M E)

Let .t be the local flow of a vector field X on P . Then, X is a U(1)-invariant vector field if
and only if .t ∈ AutP , ∀t . Because of this we denote by autP the Lie algebra of all U(1)-
invariant vector fields on P and we think of the elements of autP as being the infinitesimal
automorphisms of P . We have an identification autP = �(M, TGP ).

Let .t be the local flow of X ∈ autP . We denote by XC ∈ X(C), XE ∈ X(E),
X̄ ∈ X(C×M E), the infinitesimal generators of the flows (.t)C , (.t)E , .̄t on C, E, C×M E,
respectively, defined in section 3.1. We have Lie algebra homomorphisms

autP → X(C) X �→ XC

autP → X(E) X �→ XE

autP → X(C ×M E) X �→ X̄.

If (W ; qi) is as in section 2.2, then it is not difficult to see that a vector field X ∈ X(π−1W) is
U(1) invariant if and only if there exist functions fi, g ∈ C∞(W), such that

X = f i(q1 , . . . , qm)
∂

∂qi
+ g(q1 , . . . , qm)A∗ (1)

and we have (see [7, 9]):

XC = f i ∂

∂qi
−

(
∂g

∂qi
+
∂f h

∂qi
ph

)
∂

∂pi

(2)

XE = f i ∂

∂qi
− rg

(
y

∂

∂x
− x

∂

∂y

)
(3)

X̄ = f i ∂

∂qi
−

(
∂g

∂qi
+
∂f h

∂qi
ph

)
∂

∂pi

− rg

(
y

∂

∂x
− x

∂

∂y

)
. (4)

Note that every X ∈ autP is π -projectable and that the projections of XC , XE and X̄ onto M

coincide with that of X. Moreover, the vector field XC + XE ∈ X(C × E) is tangent to the
submanifold C ×M E and we have X̄ = XC + XE .

4. Invariance

Definition 1. A differential form � on C (resp. E, resp. C ×M E) is said to be autP invariant
if for every X ∈ autP , we have

LXC
� = 0(resp. LXE

� = 0, resp. LX̄� = 0). (5)

We denote by Iaut(C) (resp. Iaut(E), resp. Iaut(C ×M E)) the algebra of autP -invariant
differential forms on C (resp. E, resp. C ×M E). From the definitions it follows that there are
natural inclusions

Iaut(C) ⊂ Iaut(C ×M E) Iaut(E) ⊂ Iaut(C ×M E)

induced by the canonical projections pr1 : C ×M E → C, pr2 : C ×M E → E, respectively.
A differential form � on C (resp. E, resp. C ×M E) is said to be gauge invariant if

the corresponding equation in (5) holds true for every X ∈ gauP . We denote by Igau(C)

(resp. Igau(E), resp. Igau(C ×M E)) the algebra of gauP -invariant forms on C (resp. E,
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resp. C ×M E). Note that Igau(C), Igau(E), Igau(C ×M E) are endowed with a structure of
algebra over �•(M) via the natural projections. We thus have natural inclusions

Igau(C) ⊂ Igau(C ×M E) Iaut(C) ⊂ Igau(C)

Igau(E) ⊂ Igau(C ×M E) Iaut(E) ⊂ Igau(E)

Iaut(C ×M E) ⊂ Igau(C ×M E).

4.1. Structure of Igau(C)

The algebra of gauge-invariant forms on the bundle of connections of a U(1) principal bundle
π : P → M has been characterized in [7, 8]. It turns out that

Igau(C) = p∗�•(M)[ω2]

whereω2 is a symplectic form onC whose local expression in the system of coordinates defined
in section 2.2 is ω2 = dpi ∧ dqi : i.e. the general expression of a gauge-invariant r-form on C

is ξr = ∑
p∗νr−2s ∧ (ω2)

s , νr−2s ∈ �•(M), s = 0, . . . , [n/2]. In particular, it is not difficult
to prove that the subalgebra of autP -invariant forms are polynomial expressions of the form
ω2, that is

Iaut(C) = R[ω2].

5. The identification (J1P × C)/U (1) � C ×M E

5.1. The connection associated to a point in J 1P

Each section s : W → P of π : P → M , defined on an open neigbourhood of q ∈ M , defines
‘an element of connection at q’: i.e. a point �q ∈ Cq , which is determined by giving a retract
�q : TuP → VuP of the inclusion of the vertical subspace VuP ⊂ TuP , ∀u ∈ π−1(q), as
follows: �q(X) = X − (Rz)∗s∗π∗(X), X ∈ TuP , where z ∈ U(1) is the unique element such
that u = s(q) · z. Note that for every z ∈ U(1), we have (Rz)∗ ◦ �q = �q ◦ (Rz)∗. It is easy
to see that �q depends only on j 1

q s, so that we can define a map of fibred manifolds over M ,
γ : J 1P → C by setting γ (j 1

q s) = �q . We say that γ (j 1
q s) is the element of connection at

the point q associated to the 1-jet j 1
q s.

Proposition 2. Let us consider the induced action of U(1) on J 1P ; i.e. j 1
x s · z = j 1

x (Rz ◦ s)

for z ∈ U(1) and the action of U(1) on C defined by the representation λr . With the same
notation as in sections 2.3 and 5.1, let ϕ : J 1P ×C → C×M E be the map of fibred manifolds
over M given by ϕ(j 1

q s, w) = (γ (j 1
q s), [s(q), w]). Then, ϕ is a surjective submersion whose

fibres are the orbits of the action of U(1) on J 1P ×C given by (j 1
q s, w) · z = (j 1

q s · z, z−1 ·w).
Hence, we have a natural identification (J 1P × C)/U(1) � C ×M E.

Proof. Let π10 : J 1P → P be the canonical projection, π10(j
1
q s) = s(q). With the

same notation as in sections 2.2 and 2.4, let (qi, t, ti), 1 � i � m, be the coordinate
system induced on π−1

10 (π−1(W)) by (π−1(W); qi, t): i.e. ti(j 1
q s) = (∂(t ◦ s)/∂qi)(q). On

p−1(W)×W π−1
E (W) ⊂ C ×M E, we consider the coordinate system (qi, pi,x,y) defined in

sections 2.2 and 2.3. In these systems, the equations of ϕ are

qi ◦ ϕ = qi pi ◦ ϕ = −ti(1 � i � m) (x + iy) ◦ ϕ = exp(irt)(x + iy) (6)

thus proving that ϕ is a submersion. In fact, (pi ◦ϕ)(j 1
q s, w) = pi(γ (j

1
q s)), and from the very

definition of the coordinates pi in section 2.2 we have

σγ (j 1
q s)

(∂/∂qi)q = [∂/∂qi]q − pi(γ (j
1
q s))Ãq .
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Hence

(∂/∂qi)∗s(q) = (∂/∂qi)s(q) − pi(γ (j
1
q s)) A

∗
s(q).

Moreover, according to the definition of the connection associated to j 1
q s in section 5.1, γ (j 1

q s)

is obtained by imposing

0 = γ (j 1
q s) (∂/∂q

i)∗s(q) = (∂/∂qi)∗s(q) − s∗(∂/∂qi)q

= ((∂/∂qi)s(q) − pi(γ (j
1
q s))A

∗
s(q)) − ((∂/∂qi)s(q) + (∂(t ◦ s)/∂qi)(q)(∂/∂t)s(q))

and thus

pi(γ (j
1
q s)) = −(∂(t ◦ s)/∂qi)(q) = −ti(j

1
q s).

Similarly, we have

((x + iy) ◦ ϕ)(j 1
q s, w) = (x + iy)([s(q), w])

= (x + iy)[s0(q) · exp(it · s(q)), w]

= (x + iy)[s0(q), exp(irt · s(q))w]

= exp(irt · s(q))w
as follows from the very definition of x,y in section 2.3. Given a point (�q, [u,w]) ∈ C×ME,
q = π(u), since �q is a retract of VuP ⊂ TuP , we have

(�q)|TuP = ((dt)u − λi(dq
i)u) ⊗ (∂/∂t)u.

Hence, we can define a point j 1
q s ∈ J 1P by imposing s(q) = u, (∂(t ◦ s)/∂qi)(q) = λi .

Accordingly, �q and γ (j 1
q s) coincide over TuP , and since �q and γ (j 1

x s) commute with the
action of G, we can conclude that �q and γ (j 1

q s) coincide at each point of the fibre π−1(q).
Therefore, ϕ is surjective. Moreover, since u = s(q) · z = (s(q) · ζ ) · (ζ−1z), for every
ζ ∈ U(1), from the definition of γ for every X ∈ TuP , u ∈ π−1(q), we obtain

γ (j 1
q (Rζ ◦ s))(X) = X − (Rζ−1z)∗(Rζ ◦ s)∗(π∗X) = X − s∗π∗X = γ (j 1

q s)(X).

Hence

ϕ(j 1
q s · ζ, ζ−1 · w) = (γ (j 1

q s · ζ ), [s(x) · ζ, ζ−1 · w]) = (γ (j 1
q s), [s(q), w]) = ϕ(j 1

q s, w).

Conversely, assume γ (j 1
q s) = γ (j 1

q s
′), [s(q), w] = [s ′(q), w′]. Then there exists ζ ∈ U(1)

such that s ′(q) = s(q) · ζ , w′ = ζ−1 · w. Hence γ (j 1
q (Rζ ◦ s)) = γ (j 1

q s
′), and since

(Rζ ◦ s)(q) = s ′(q) = u, from the definition of γ , we obtain

(∂(t ◦ s ′)/∂qi)(q) = (∂(t ◦ Rζ ◦ s)/∂qi)(q).

Thus, j 1
q (Rζ ◦ s) = j 1

q s · ζ = j 1
q s

′. �

6. The interaction 1-form

6.1. The structure form

As is well known (e.g., see [12]), J 1P is endowed with a V (P )-valued 1-form θ , called the
structure form on the 1-jet bundle. For a U(1) bundle π : P → M , the vertical bundle V (P ) is
a trivial line bundle, so that we can think of the structure form as an ordinary (i.e. real-valued)
1-form on J 1P . With the same notation as in section 2.2, let (qi, t, ti), 1 � i � m, be the
coordinate system induced on π−1

10 (π−1(W)) by (π−1(W); qi, t). Then, the local expression
of the structure form is θ = dt − ti dqi .
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Proposition 3. Let z = x+iy be the complex coordinate on C, and let ϕ : J 1P ×C → C×ME

be the submersion defined in proposition 2. We have

(i) The 1-form Im (z̄ dz) + rzz̄θ on J 1P × C, where θ denotes the structure form and Im the
imaginary part, is ϕ-projectable onto C ×M E: that is, there exists a unique 1-form α on
C ×M E such that

ϕ∗(α) = Im (z̄ dz) + rzz̄θ.

(ii) Furthermore, α is autP -invariant. It is called the interaction 1-form on the bundleC×ME,
and its local expression on the coordinate system (qi, pi,x,y) (cf sections 2.2 and 2.3) is

α = x dy − y dx + r(x2 + y2)pi dqi. (7)

Proof. (i) With the notations above the local expression of Im (z̄ dz) + rzz̄θ is x dy − y dx +
r(x2 + y2)(dt − ti dqi). Let A• ∈ X(J 1P × C) be the fundamental vector field associated to
the standard basis A ∈ u(1) under the action of U(1) on J 1P × C defined in proposition 2.
We have A• = ∂/∂t + r(y∂/∂x − x∂/∂y). Hence:

(a) iA•(Im (z̄ dz) + rzz̄θ) = 0,
(b) iA• d(Im (z̄ dz) + rzz̄θ) = 0.
From (a), (b) we obtain LA•(Im (z̄ dz) + rzz̄θ) = 0, or equivalently,
(c) (Rexp(it))

∗(Im (z̄ dz) + rzz̄θ) = Im (z̄ dz) + rzz̄θ , ∀t ∈ R.
Taking into account that kerϕ∗ = 〈A•〉, by virtue of proposition 2, from equation (a) it

follows that (Im (z̄ dz)+rzz̄θ)(X) = 0, for every ϕ-vertical tangent vectorX ∈ T(j 1
q s,w)(J

1P ×
C). Moreover, from equation (c) we obtain

(Im (z̄ dz) + r zz̄θ)((Rz)∗X) = (Im (z̄ dz) + rzz̄θ)(X).

This proves that there exists a unique 1-formα onC×ME, such that for everyX ∈ T (J 1P×C),
α(ϕ∗X) = (Im (z̄ dz) + rzz̄θ)(X).

(ii) By using the equations of ϕ in formula (6), the local expression for α in the statement
is easily deduced and, as a simple calculation shows, for every X ∈ autP , from formula (4)
we obtain LX̄α = 0. �

6.2. Hermitian structure on E

As λr is a unitary representation, E is endowed with a canonical Hermitian structure 〈,〉:
E ×M E → C, which is uniquely determined by imposing 〈[u,w1], [u,w2]〉 = w̄1w2, for all
u ∈ P , w1, w2 ∈ C, where we have used the notation introduced in section 2.3 and w̄ stands
for the complex conjugate of w ∈ C.

The geometric interpretation of the interaction 1-form is as follows.

Proposition 4. With the hypotheses and notation as in sections 2.1, 2.3 and 6.2, for every
connection � on π : P → M , and every section ξ ∈ �(M,E), we have

(σ�, ξ)
∗α = Im 〈ξ,∇ξ〉 (8)

where ∇ stands for the covariant derivative induced by � on E. Conversely, if β is a pr2-
horizontal 1-form on C ×M E, pr2 : C ×M E → E being the projection onto the second
factor, which satisfies the same property stated above, then β = α.

Proof. As is well known (e.g., see [11, section 3.5.2]) to each section ξ ∈ �(M,E) we can
associate a function Fξ : P → C, by imposing for every u ∈ P , ξ(π(u)) = [u, Fξ (u)]
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(notation as in section 2.3). If χ = (x + iy) ◦ ξ , locally, then on a trivializing open subset
π−1(W) � W × U(1) we have

Fξ (q
1, . . . , qm; t) = exp(−irt)χ(q1, . . . , qm)

since Fξ (u · z) = z−1 Fξ (u), for every u ∈ P , z ∈ U(1). Given a connection � on P ,
and a vector field X of M , then X∗Fξ is the function corresponding to the section ∇Xξ

(cf [10, section 3.1.3]). We have (∂/∂qi)∗ = ∂/∂qi − (pi ◦ σ�)(∂/∂t). Hence

(∂/∂qi)∗Fξ = exp(−irt)
∂χ

∂qi
+ ir exp(−irt)(pi ◦ σ�)χ

= exp(−irt)

(
∂χ

∂qi
+ ir(pi ◦ σ�)χ

)

and accordingly,

(x + iy) ◦ (∇∂/∂qi ξ ) = ∂χ/∂qi + ir(pi ◦ σ�)χ.

Therefore,

〈ξ,∇∂/∂qi ξ〉 = χ̄(∂χ/∂qi) + irχχ̄(pi ◦ σ�)

and the result follows from the local expression of α (see formula (7) in proposition 3).
Moreover, assume that a pr2-horizontal 1-form β satisfies the same property as the interaction
1-form. Locally, we have β = A dx + B dy + Cj dqj . Hence

(A ◦ (σ�, ξ))
∂(x ◦ ξ)

∂qj
+ (B ◦ (σ�, ξ))

∂(y ◦ ξ)

∂qj
+ Cj ◦ (σ�, ξ)

= (x ◦ ξ)
∂(y ◦ ξ)

∂qj
− (y ◦ ξ)

∂(x ◦ ξ)

∂qj
+ rχχ̄pj ◦ σ�.

Since x ◦ ξ , y ◦ ξ are arbitrary functions and for a given q ∈ M , (σ�(q), ξ(q)) is an arbitrary
point of the interaction bundle we can conclude A = −y, B = x, Cj = r(x2 + y2)pj , thus
concluding the proof. �

Corollary 5. We have (σ�, ξ)∗ dα = 2Im 〈∇ξ,∇ξ〉+r〈ξ, ξ〉(σ ∗
�ω2), whereω2 is the symplectic

2-form defined in section 4.1.

Proof. Since ∇ is compatible with the Hermitian metric of E, for every X, Y ∈ X(M), we
have

((σ�, ξ)
∗ dα)(X, Y ) = d((σ�, ξ)

∗α)(X, Y ) = d(Im 〈ξ,∇ξ〉)(X, Y )

= XIm 〈ξ,∇Y ξ〉 − Y Im 〈ξ,∇Xξ〉 − Im 〈ξ,∇[X,Y ]ξ〉
= Im (X〈ξ,∇Y ξ〉 − Y 〈ξ,∇Xξ〉 − 〈ξ,∇[X,Y ]ξ〉)
= 2Im 〈∇Xξ,∇Y ξ〉 + Im 〈ξ, R(X, Y )ξ〉

where R is the curvature tensor of ∇. Moreover, from the definition of the coordinates pi given
in section 2.2 and the local expression of ω2 given in section 4.1, it follows that pulling ω2 back
along the sectionσ� : M → C one obtains the curvature form of�: that is, σ ∗

�ω2 = dω� = �� .
The result thus follows from the well known fact on the theory of connections according to
which R is the image of �� with respect to the homomorphism of Lie algebras induced
by the representation under consideration: i.e., in our case (λr)∗ : u(1) → gl(2,R),
(λr)∗ ◦ �� = ri�� = R. �
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6.3. Physical meaning of the interaction form

Let us now consider a pseudo-Riemannian metric 〈,〉M on the base manifold M and a
Lagrangian function L ∈ C∞(J 1(C ×M E)). As is well known (see [4, section 5.1]), for
every connection � on P and every section ξ of E, an adP -valued 1-form on M is defined:
the current J�,ξ , which appears in the inhomogeneous part of the Euler–Lagrange equations
of L. In particular, let LYM be the classical Abelian Yang–Mills–Higgs Lagrangian, that is

LYM = 1
2 〈∇ξ,∇ξ〉M,E − 1

2m
2〈ξ, ξ〉E − 1

2 〈��,��〉M
where 〈,〉E is the Hermitian pairing in E defined in section 6.2 and 〈,〉M,E denotes the
pairing induced by 〈,〉E and the metric tensor 〈,〉M on E-valued differential forms of M .
The corresponding current is given by (cf [4, section 5.2])

J�,ξ = 1

2i
(〈ξ,∇ξ〉E − 〈ξ,∇ξ〉E).

From the geometrical interpretation of the form α (see proposition 4 above) we obtain

J�,ξ = (σ�, ξ)
∗α.

In other words, the interaction form can be understood as a ‘universal’ current of the Yang–
Mills–Higgs action in the sense that its pull-back along a section (σ�, ξ) of the interaction
bundle provides the corresponding current.

7. The structure of Igau(E)

Proposition 6. Let πE : E → M be the vector bundle associated to a U(1) principal bundle
π : P → M by a linear representationλ : U(1) → GL(V ). We denote by A(V ) the algebra of
differential forms on V such that iA∗� = 0, iA∗ d� = 0, where A∗ ∈ X(V ) is the fundamental
vector field associated to the standard basis A ∈ u(1) under the linear representation λ. We
have

(i) For every � ∈ A(V ) of degree d , there exists a unique differential d-form �E on E such
that for every X1, . . . , Xd ∈ T(u,w)(P × V ),

�E((πV )∗X1, . . . , (πV )∗Xd) = �((pr2)∗X1, . . . , (pr2)∗Xd)

whereπV : P ×V → E = (P ×V )/U(1) is the canonical projection andpr2 : P ×V →
V is the projection onto the second factor.

(ii) Furthermore, �E is Aut(P ) invariant: i.e. for every . ∈ Aut(P ), .∗
E�E = �E . Hence

we have a homomorphism of Z-graded algebras A(V ) → Iaut(E), � �→ �E .

Proof. (i) The formula in the statement completely determines �E . Behaving as in the proof
of proposition 3(i), in order to prove the existence of �E we only need to check that pr∗

2� is
πV -projectable, which follows from the hypotheses.

(ii) Every . ∈ AutP acts on an arbitrary associated vector bundle by the same formula
as in section 3.1: i.e. .E([u,w]) = [.(u),w], u ∈ P , w ∈ V , and it is easily seen that
.E ◦ πV = πV ◦ (. × 1V ). Hence, for every X1, . . . , Xd ∈ T(u,w)(P × V ) we have

(.∗
E�E)((πV )∗X1, . . . , (πV )∗Xd) = �((pr2)∗(. × 1V )∗X1, . . . , (pr2)∗(. × 1V )∗Xd)

= �((pr2)∗X1, . . . , (pr2)∗Xd)

= �E((πV )∗X1, . . . , (πV )∗Xd)

since pr2 ◦ (. × 1V ) = pr2, thus concluding the proof. �
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Notation 7. Let f : C → R be the map f (z) = z̄ z. It is obvious that f, df ∈ A(C), under
the representation λr under consideration. Moreover, as a straightforward computation shows,
we have

A(C) = f ∗�•(R)

that is, f and df are the generators of A(C). According to proposition 6(ii), we thus
have fE, dfE ∈ Iaut(E). For the sake of simplicity, we shall write f instead of fE . Note
that f is the square of the norm of the Hermitian structure on E (cf section 6.2): i.e.
f ([u,w]) = 〈[u,w], [u,w]〉 = w̄w.

Proposition 8. Assume M is connected and orientable by a volume form vm. Then, Igau(E)

is generated over (πE, f )
∗�•(M × R) by the globally defined forms (x dy − y dx) ∧ π∗

Evm
and dx ∧ dy ∧ π∗

Evm.

Proof. Every differential s-form �s on E can be written as follows:

�s = hI dqI + hxJ dqJ ∧ dx + h
y

J dqJ ∧ dy + h
xy

K dqK ∧ dx ∧ dy

where hI , h
x
J , h

y

J , h
xy

K ∈ C∞(E), and I, J,K are multi-indices L = (l1, . . . , lu) of degree
|L| = u equal to |I | = s, |J | = s − 1, and |K| = s − 2, and we set

dqL = dql1 ∧ · · · ∧ dqlu .

If X = gA∗, then XE = −rg(y∂/∂x − x∂/∂y) and by imposing the invariance condition
LXE

�s = 0 for g = 1 we obtain the following system of equations:

XE(hI ) = 0 XE(h
x
J ) − rh

y

J = 0 XE(h
y

J ) + rhxJ = 0 XE(h
xy

K ) = 0.

Hence hI , h
xy

K ∈ (πE, f )
∗C∞(M × R) and the second and third equations above yield

hxJ = AJx + BJy h
y

J = AJy − BJx

for certain functions AJ ,BJ ∈ (πE, f )
∗C∞(M × R). Accordingly, we have

�s = hI dqI + AJ dqJ ∧ (x dx + y dy) + BJ dqJ ∧ (y dx − x dy)

+hxyK dqK ∧ dx ∧ dy.

By again imposing the invariance condition for an arbitrary coefficient g, we obtain

(x2 + y2)BJ dqJ ∧ dg + h
xy

K dqK ∧ dg ∧ (x dx + y dy) = 0.

Therefore, if |J | < m, then BJ = 0, and if |K| < m, then h
xy

K = 0 and the result follows. �

Corollary 9. With the same notation as in propositions 6 and 8 we have

Iaut(E) = f ∗�•(R) � A(C).

8. Structure of Igau(C ×M E)

Notation 10. Let K be the subalgebra of �•(C ×M E) defined by

K = (πE ◦ pr2, f ◦ pr2)
∗�•(M × R)

withpr1 : C×ME → C, pr2 : C×ME → E being the canonical projections onto the factors.
Roughly speaking, a form ξ belongs to K if and only if its local expression in a coordinate
system on C ×M E, as in sections 2.2 and 2.3, is

ξ = hi1...is dqi1 ∧ · · · ∧ dqis + gj1...js−1 dqj1 ∧ · · · ∧ dqjs−1 ∧ df



Gauge invariance on interaction U(1) bundles 3263

where

hi1...is = hi1...is (q
1, . . . , qn,x2 + y2) gj1...js−1 = gj1...js−1(q

1, . . . , qn,x2 + y2)

are differentiable mappings depending on M and the Hermitian norm of E.
This algebra K, together with the contact form α and the symplectic form pr∗

1ω2, allows
us to state the characterization of Igau(C ×M E) more precisely.

Theorem 11. Let π : P → M be a U(1) principal bundle, let p : C → M be the bundle of
connections of P , and let πE : E → M be the vector bundle associated to P by the linear
representation λr , r ∈ N, of U(1) on C given by λr(z)(w) = zrw, z ∈ U(1), w ∈ C. With the
above hypotheses and notation the forms α, dα, ω2, generate the algebra of gauge-invariant
differential forms on the interaction bundle over the algebra K, where α is the interaction
1-form defined in proposition 3 and ω2 is the symplectic structure on C defined in section 4.1:
that is,

Igau(C ×M E) = K[α, dα, pr∗
1ω2]. (9)

Lemma 12. A differential form � on C ×M E is autP invariant (resp. gauge invariant) if and
only if ϕ∗� is autP invariant (resp. gauge invariant) on J 1P × C. Moreover, Iaut(C ×M E)

(resp. Igau(C ×M E)) is isomorphic to the algebra of autP -invariant (resp. gauge-invariant)
differential forms D on J 1P × C such that:

(i) iA•D = 0
(ii) LA•D = 0.

Proof of Lemma 12. The first part of the statement follows from the fact that (X(1), 0) ∈
X(J 1P × C) is projectable onto X̄ for every X ∈ autP , and the second part follows by taking
into account that the fibres of ϕ are connected. �

Lemma 13. The algebra of gauge-invariant forms on J 1P × C is given by

(π1 × 1C)
∗�•(M × C)[θ, dθ ]

that is, every gauge s-form D on J 1P × C can be written as

D = Ds + Ds−1 ∧ dx + D′
s−1 ∧ dy + Ds−2 ∧ dx ∧ dy (10)

whereDs , Ds−1, D′
s−1, Ds−2 are forms of degree s, s−1, s−1, s−2, respectively, on J 1P ×C,

which are polynomials in θ , dθ whose coefficients are (π1 ◦pr1)-horizontal differential forms,
pr1 : J 1P × C → J 1P being the canonical projection onto the first factor.

Proof of Lemma 13. First, let us study the gauge invariance on J 1P . Taking into account the
local expression of the structure form θ = dt − ti dqi in a coordinate system (qi, t, ti) of J 1P ,
it is easy to see that every s-form D on J 1P can be locally written as

D =
∑

|I |+|J |=s

fIJ (dq
1)i1 ∧ · · · ∧ (dqn)in ∧ (dt1)

j1 ∧ · · · ∧ (dtn)
jn ∧ θ

+
∑

|K|+|L|=s

hKL(dq
1)k1 ∧ · · · ∧ (dqn)kn ∧ (dt1)

l1 ∧ · · · ∧ (dtn)
ln

with fIJ , hKL ∈ C∞(J 1P), where I = (i1, . . . , in), J = (j1, . . . , jn), K = (k1, . . . , kn),
L = (l1, . . . , ln), are Boolean multi-indices: i.e. I, J,K,L ∈ {0, 1}n, and |I | = i1 + · · · + in.
Following the notation in section 3.2, if X = g(∂/∂t), g ∈ C∞(M), is the expression of a
gauge field on P , its lifting to the jet bundle is

X(1) = g
∂

∂t
+

∂g

∂qi

∂

∂ti
.
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If we let g = 1, the condition of gauge invariance tells us the following:

0 = LX(1)D = ∂fIJ

∂t
(dq1)i1 ∧ · · · ∧ (dqn)in ∧ (dq1)

j1 ∧ · · · ∧ (dtn)
jn ∧ θ

+
∂hKL

∂t
(dq1)k1 ∧ · · · ∧ (dqn)kn ∧ (dq1)

l1 ∧ · · · ∧ (dtn)
ln .

Hence ∂fIJ /∂t = 0, ∂hKL/∂t = 0. For g = qa , a = 1, . . . , n, we obtain ∂fIJ /∂q
a = 0,

∂hKL/∂q
a = 0 and we conclude that fIJ , hKL ∈ C∞(M), ∀I, J,K,L. Now, let us consider

g = 1
2 (q

1)2 in the definition of X. The condition of gauge invariance on the fibre p−1(q0)

yields

0 = LX(1)D|p−1(q0) = fIJ (dq
1)i1 ∧ · · · ∧ (dqn)in ∧ (dq1)

j1 ∧ · · · ∧ (dtn)
jn ∧ θ

+hKL(dq
1)k1 ∧ · · · ∧ (dqn)kn ∧ (dq1)

l1 ∧ · · · ∧ (dtn)
ln .

Hence if J is such that j1 = 1, then i1 = 1, and if l1 = 1 then k1 = 1. In general, by
considering an arbitrary index 1 � a � n and g = 1

2 (q
a)2 we conclude that ja = 1 implies

ia = 1 and, similarly, la = 1 implies ka = 1. Therefore, D can be rewritten as

D =
∑

|I |+2|J |=s

f̃IJ (dq
1)i1 ∧ · · · ∧ (dqn)in ∧ (dq1 ∧ dt1)

j1 ∧ · · · ∧ (dqn ∧ dtn)
jn ∧ θ

+
∑

|K|+2|L|=s

h̃KL(dcq
1)k1 ∧ · · · ∧ (dqn)kn ∧ (dq1 ∧ dt1)

l1 ∧ · · · ∧ (dqn ∧ dtn)
ln

with iu + ju � 1, ku + lu � 1 for u = 1, . . . , n.
If we take g = q1 · qa , 1 < a � n, in the definition of X, the gauge-invariance condition

now says

0 = LX(1)D|p−1(q0) = f̃IJ (dq
1)i1 ∧ · · · ∧ (dqn)in ∧ (dq1 ∧ dqa)j1

∧ · · · ∧ (dqn ∧ dtn)
jn ∧ θ + f̃IJ (dq

1)i1 ∧ · · · ∧ (dqn)in ∧ (dq1 ∧ dt1)
j1

∧ · · · ∧ (dqa ∧ dq1)ja ∧ · · · ∧ (dqn ∧ dtn)
jn ∧ θ + h̃KL(dq

1)k1

∧ · · · ∧ (dqn)kn ∧ (dq1 ∧ dqa)l1 ∧ · · · ∧ (dqn ∧ dtn)
ln + h̃KL(dq

1)k1

∧ · · · ∧ (dqn)kn ∧ (dt1)
l1 ∧ · · · ∧ (dqa ∧ dq1)la ∧ · · · ∧ (dqn ∧ dtn)

ln .

That is, f̃IJ − f̃IJ ′ = 0 whenever

J = (1, j2, . . . , ja−1, 0, ja+1, . . . , jn) J ′ = (0, j2, . . . , ja−1, 1, ja+1, . . . , jn)

and h̃KL − h̃KL′ = 0 whenever

L = (1, l2, . . . , la−1, 0, la+1, . . . , ln) L′ = (0, l2, . . . , la−1, 1, la+1, . . . , ln).

Accordingly, if D contains a summand of the form ωs−2 ∧ dqa ∧ dta , where a = 1, . . . , n
is an arbitrary fixed index, then D contains the summand ωs−2 ∧ dq1 ∧ dt1, and conversely.
Recalling that dθ = dqi ∧ dti , we have that D is a polynomial of θ and dθ : i.e. Igau(J

1P) =
π∗

1�
•(M)[θ, dθ ].
Finally, we note that the gauge group GauP acts trivially on C: that is, the action on

J 1P × C is only defined on the jet bundle. Hence, the result follows. �

Proof of Theorem 11. According to the previous lemmas we are led to study the conditions
of ϕ-projectability iA•D = 0, LA•D = 0, of a form

D = Ds + Ds−1 ∧ dx + D′
s−1 ∧ dy + Ds−2 ∧ dx ∧ dy (11)

with Ds , Ds−1, D′
s−1, Ds−2 as in lemma 13. The vector field A• is as follows:

A• = ∂

∂t
+ r

(
y
∂

∂x
− x

∂

∂y

)
.
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Hence

iA•D = i∂/∂tDs + (i∂/∂tDs−1) ∧ dx + (−1)s−1ryD′
s−1 + (i∂/∂tD

′
s−1) ∧ dy − (−1)s−1rxD′

s−1

+(i∂/∂tDs−2) ∧ dx ∧ dy + (−1)srDs−2 ∧ (y dy + x dx)

vanishes if and only if

i∂/∂tDs−2 = 0

i∂/∂tDs−1 + (−1)srxDs−2 = 0

i∂/∂tD
′
s−1 + (−1)sryDs−2 = 0

i∂/∂tDs + (−1)s−1r(yDs−1 − xD′
s−1) = 0.

As θ(∂/∂t) = 1, from the first equation above we conclude that Ds−2 depends only on dθ .
From the last three equations we obtain

Ds−1 = (−1)s−1rxθ ∧ Ds−2 + ξs−1

D′
s−1 = (−1)s−1ryθ ∧ Ds−2 + ξ ′

s−1

Ds = (−1)srθ ∧ (yξs−1 − xξ ′
s−1) + ξs

(12)

where ξs−1, ξ ′
s−1, ξs are polynomials in dθ whose coefficients are (π1 ◦ pr1)-horizontal

forms. Moreover, substituting the expressions above for Ds−1, D′
s−1, Ds into formula (11)

and simplifying it, we have

LA•D = LA•ξs + (−1)s−1rθ ∧ (ryξ ′
s−1 + xLA•ξ ′

s−1 + rxξs−1 − yLA•ξs−1)

−(−1)srθ ∧ LA•Ds−2 ∧ (x dx + y dy) + LA•ξs−1 ∧ dx

+LA•ξ ′
s−1 ∧ dy + r(ξs−1 ∧ dy − ξ ′

s−1 ∧ dx) + LA•Ds−2 ∧ dx ∧ dy.

Hence LA•D = 0 if and only if

LA•Ds−2 = 0

LA•ξs = 0

LA•ξs−1 − rξ ′
s−1 = 0

LA•ξ ′
s−1 + rξs−1 = 0.

As dθ does not depend on the variable t , the first two equations above tell us that the coefficients
of the differential forms Ds−2, ξs are invariant under rotations around the origin of the plane
C: that is, their dependence on x, y is via the mapping f = x2 + y2. On the other hand, the
last two equations can be seen as a system of partial differential equations and it is not difficult
to check that this system is completely integrable and its solution is

ξs−1 = xζs−1 + yζ ′
s−1

ξ ′
s−1 = yζs−1 − xζ ′

s−1

(13)

ζs−1, ζ ′
s−1 being polynomic s − 1 forms on dq ′s and dθ whose coefficients are functions of

q1, . . . , qn, x2 + y2.
Taking into account formulae (11)–(13), we finally obtain

D = ξs − ζ ′
s−1 ∧ (r(y2 + x2)θ − y ∧ dx + x dy) + ζs−1 ∧ (x dx + y dy)

+Ds−2 ∧ (rx dx ∧ θ + ry dy ∧ θ + dx ∧ dy)

which projects, by virtue of the local expression of the contact form α (cf proposition 3), onto
the form of C ×M E,

ξs − 1
2 r(x

2 + y2)Ds−2 ∧ ω2 − ζ ′
s−1 ∧ α + 1

2ζs−1 ∧ df + 1
2Ds−2 ∧ dα

thus concluding the proof. �
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Corollary 14. The algebra of autP -invariant forms on C ×M E is given by

Iaut(C ×M E) = f ∗�•(R)[α, dα, pr∗
1ω2].

Proof. By virtue of propositions 3(ii) and 6(ii), respectively, the form α and the function f

are autP invariant. From theorem 11 and [8, theorem 3.1], the result thus follows. �

9. Concluding remarks

Remark 15. The fundamental relation among α, f and the symplectic form ω2 on C ×M E is

df ∧ α = f (dα − rf ω2).

This follows from proposition 6 and formula (7) in proposition 3, taking into account the local
expression of ω2 = dpi ∧ dqi .

Notation 16. Let Z be the zero section of E: i.e. Z = f −1(0). We set ZC = C ×M Z,
O = C ×M E—ZC . It follows that O is a dense open subset of the interaction bundle. We
denote by (πE ◦ pr2, f ◦ pr2)O : O → M × R the restriction of (πE ◦ pr2, f ◦ pr2) to O.

Remark 17. From remark 15 it follows that dα|O = (f −1 df ∧ α + rf ω2)|O. Hence,

Igau(O) = K[α, pr∗
1ω2].

Remark 18. Also, in K[α, dα, ω2], we only need to take one factor for dα, since

dα ∧ dα = rω2 ∧ (rf ω2 + 2 df ∧ α)

and the factorα∧dα does not appear either sinceα∧dα = r f α∧ω2. For the sake of simplicity
we shall usually identify �•(C) with pr∗

1�
•(C), and �•(E) with pr∗

2�
•(E). Accordingly,

the general expression for a gauge-invariant n-form �n on the interaction bundle is

�n =
[ n2 ]∑
j=0

ηn−2j ∧ (ω2)
j +

[ n−1
2 ]∑

j=0

η′
n−1−2j ∧ (ω2)

j ∧ α +
[ n−2

2 ]∑
j=0

η′′
n−2−2j ∧ (ω2)

j ∧ dα

where η, η′, η′′ ∈ (πE, f )
∗�•(M × R). Also note that for n > 2m, �n = 0, necessarily.

Remark 19. On O, a proof of corollary 5 can also be given by using the formula of remark 15.
In fact, if ξ is a non-vanishing section of E on an open subset U ⊂ M , on U we can define an
ordinary 1-form by setting ∇Xξ = η(X)ξ , and taking into account that ξ ∗(df ) = d〈ξ, ξ〉 we
have

(σ�, ξ)
∗(df ∧ α)(X, Y ) = ((d〈ξ, ξ〉) ∧ (Im 〈ξ,∇ξ〉))(X, Y )

= X〈ξ, ξ〉 · Im 〈ξ,∇Y ξ〉 − Y 〈ξ, ξ〉 · Im 〈ξ,∇Xξ〉
= Im (X〈ξ, ξ〉 · Im 〈ξ,∇Y ξ〉 − Y 〈ξ, ξ〉 · 〈ξ,∇Xξ〉)
= Im (〈∇Xξ, ξ〉〈ξ,∇Y ξ〉 − 〈∇Y ξ, ξ〉〈ξ,∇Xξ〉)
= Im ((η(X)η(Y ) − η(X)η(Y ))〈ξ, ξ〉2)

= 2Im (η(X)η(Y ))〈ξ, ξ〉2

= 2(Im 〈∇Xξ,∇Y ξ〉)〈ξ, ξ〉
= 〈ξ, ξ〉[((σ�, ξ)∗dα)(X, Y )−r〈ξ, ξ〉(σ ∗

�ω2)(X, Y )].
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